Cave and Karst Management in Australasia XX

Total Page:16

File Type:pdf, Size:1020Kb

Cave and Karst Management in Australasia XX A preliminary survey of the invertebrate fauna of the Gunung Mulu World Heritage karst area, Sarawak, Malaysia Tim Moulds 1, Jay Anderson, Ross Anderson and Patrick Nykiel GHD 239 Adelaide Terrace Perth WA 6004 1 Email: [email protected] 1 Abstract microhabitat variability and availability within sampled caves, with greater The Gunung Mulu World Heritage Area invertebrate abundance related to bird and (Mulu) is situated in the north eastern bat guano deposits. This study represents corner of Sarawak, Malaysia on the Island of the first stage of invertebrate research at Borneo, adjacent to the South China Sea. Mulu, and future efforts will focus on The area was prescribed as a national park increasing the photo inventory to provide a in 1974 and is the largest national park in useful resource to the Mulu Park and 2 Sarawak covering an area of 528 km . The Sarawak Forestry staff to identify cave area contains significant karstic limestone, invertebrates in the field. Ultimately with some of the world’s largest caves by increasing the local knowledge of cave volume known from the area including invertebrate fauna will provide the best Deer Cave and the Clearwater System. protection for these important ecosystems. In 2012 a team of Australian speleologists Introduction undertook a preliminary survey of the invertebrate biodiversity of eight caves The Gunung Mulu World Heritage Area within Mulu. The caves were a mix of (Mulu) is situated in the north eastern tourist, adventure and wild caves within the corner of Sarawak , Malaysia on the Island park. Invertebrates were recorded from a of Borneo, adjacent to the South China Sea mixture of different microhabitats found (Figure 1). The area was prescribed as a within the caves and reference specimens national park in 1974 and is the largest from each cave were collected and national park in Sarawak covering an area of preserved for future study. 528 km 2. Mulu contains the second highest peak in Borneo, Gunung Mulu, a sandstone The aims of the study were to document the mountain situated to the east of the Melinau biodiversity of the caves; provide a photo Limestone that contains the extensive caves inventory of species recorded; compare the that are the subject of the current study. invertebrate diversity and abundance between different cave zones and Gunung Mulu World Heritage Area microhabitats; compare the invertebrate (GMWHA) contains significant karst and diversity and abundance between caves used associated subterranean fauna. Although for different tourism purposes. substantial research was undertaken on the bio-speleological values, this was more than The survey recorded over 19,000 specimens 30 years ago and much has changed in using a combination of collection and regard to our knowledge of such fauna observation of species that presently especially within tropical settings. represents 100 different morpho-species, from 28 orders and 9 classes. The number Dr G E Wilford was the first individual to of morpho-species is expected to increase visit the Mulu caves with the objective to with additional sampling and further explore the caves in the early 1960s. Wilford identification of the specimens already worked with the Geological Survey of the collected. Forty different species have been Borneo region and completed surveys of photo-inventoried thus far. Deer cave, parts of Wind cave and Terikan cave. He indicated in his book of the caves Preliminary analysis of data has shown no of Sabah and Sarawak that large and discernible differences in invertebrate spectacular caves are most likely to be diversity or abundance between tourist discovered in the Melinau area. caves and wild caves. Observed differences in invertebrate populations are related to ACKMA Cave and Karst Management in Australasia 20 Waitomo Caves, New Zealand, 2013 84 Prior to the 15 month scientific expedition 2. Provide a photo inventory of species by the Royal Geographical Society in 1977 - recorded. 78, the Mulu caves had first been reported 3. Compare the invertebrate diversity in 1858, however, little work had been done and abundance between different on the biospeleological values of the area. cave zones and microhabitats. Aims and Objectives of Preliminary 4. Compare the invertebrate diversity Survey and abundance between caves used The current preliminary survey aims to for different tourism purposes. provide a basis for future biological surveys 5. Provide management strategies to in Mulu by building upon the only other facilitate fauna survival and mitigate substantial biospeleological survey threats. undertaken in the area by Chapman (1982). The current preliminary survey aims to 6. Provide recommendations for future provide an initial overview of the works to compliment the findings of invertebrate fauna in the cave systems near the current study. the Park Headquarters and predominately in 7. Preparation of recommendations for those used as tourist caves and adventure further cave biodiversity studies, caves. potentially focusing on sustainable The primary survey aims were to: cave management and adequate tourism development 1. Preliminary overview of the biodiversity and initial insights into The caves chosen were a mixture of tourist the cave ecosystems as a baseline caves, adventure use caves and wild caves and starting-point for future and included a range of habitats and use ecosystem studies of the cave levels. The caves examined are shown in systems. Table 1. ACKMA Cave and Karst Management in Australasia 20 Waitomo Caves, New Zealand, 2013 85 Figure 1 Map of all Mulu Cave systems (after www.mulucaves.org ) Cave Name Primary Use Limestone Section Visitation Deer Cave Tourism Deer/Green Section High Deer Water Cave Wild Deer/Green Section Low Green Cave Wild Deer/Green Section Low Stonehorse Cave Adventure Deer/Green Section Low Fruit Bat Cave Adventure Kenyalang/Fruit Bat Low Kenyalang Cave Adventure Kenyalang/Fruit Bat Low Lagang Cave Tourism/Adventure Gunung Api Moderate Racer Cave Adventure Gunung Api Moderate Clearwater Cave Tourism/Adventure Gunung Api Moderate Table 1 Cave usage and location within Mulu ACKMA Cave and Karst Management in Australasia 20 Waitomo Caves, New Zealand, 2013 86 Survey Timing and Participants severely alters or completely removes many circadian cycles affecting ecosystem th The survey was undertaken between the 29 function (Lamprecht and Weber, (1992), th April – 12 May 2012. The survey was Langecker, (2000)). Temperatures are undertaken by a specialist cave biologist, Dr usually constant, varying only slightly Timothy Moulds (Australia), and assisted by between seasons. Humidity is commonly a team of Australian speleologists who have high, providing an ideal habitat for many experience in cave interpretation, guiding invertebrate species susceptible to and speleology. An additional field visit was desiccation. The lack of photosynthetic undertaken by Dr Timothy Moulds and a plants changes the trophic structure of cave smaller speleological team from the Western ecosystems, with energy sources usually Australian Speleological Group (WASG) in being transported from the surface (Poulson th th December 2012 (12 – 17 December) to and Lavoie, (2000), Poulson, (2005)). Caves revisit some of the primary caves examined are defined as human-sized subterranean previously. The Australian biospeleological voids, although cave adapted animals are team were Dr Timothy Moulds, Jay known to occur in the smaller spaces Anderson, Ross Anderson, Patrick Nykiel, between large voids called micro- and meso Rob Susac, Barbara Zakrzewska, Dr caverns (Howarth, (2003)). Stephen Swabey, Toni Lowe, Sharon Thwaites, Ian Thwaites, Jane Pulford, Tony Caves are divided into several distinct Veness, Dr Bert De Waale, Gregoriy biological zones to aid interpretation (Figure Tsaplin, Christine Best, Andrew Thomas, 2). These correspond to the amount of and Sandi Cheema. available light and varying environmental conditions (Humphreys, (2000)). The Mulu park administration provided Entrance Zone is the area directly around the assistance to the project through the cave entrance; it is generally well lit, often provision of accommodation, staff for field supports photosynthetic plants, and work and guiding, and numerous other undergoes daily temperature and humidity forms. fluctuations. The Twilight Zone is just beyond Further field assistance was provided by the entrance zone and is often dominated by Mulu Park staff including, Bian Rumei, Syria lichen and algae that require low light Lenjau, Jeffry Simun, Brian Clark, Sue Clark, conditions. The temperature and humidity Jeremy Clark and Sarawak Forestry Staff led are still variable but fluctuations are by Anne Malissa King. dampened compared with epigean variation. Introduction to Subterranean Deeper into a cave, light is reduced to zero Biology and the Dark Zone is entered, which is subdivided into three zones, the transition, Caves form a very stable and generally deep cave and stale air zones. The Transition homogenous environment in which to Zone is perpetually dark, but still fluctuates conduct various ecological and evolutionary in temperature and humidity determined by experiments, such as on competition epigean conditions. The Deep Cave Zone is between species, resource partitioning, and almost constant in temperature and the processes of speciation (Poulson and humidity conditions. White, (1969)). The total absence of light ACKMA Cave and Karst Management in Australasia 20 Waitomo Caves, New Zealand, 2013 87 Figure 2 The
Recommended publications
  • Hox Gene Duplications Correlate with Posterior Heteronomy in Scorpions
    Downloaded from http://rspb.royalsocietypublishing.org/ on February 17, 2015 Hox gene duplications correlate with posterior heteronomy in scorpions Prashant P. Sharma1, Evelyn E. Schwager2, Cassandra G. Extavour2 and Ward C. Wheeler1 rspb.royalsocietypublishing.org 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA 2Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Research The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres Cite this article: Sharma PP, Schwager EE, to form morphologically and functionally distinct segmental regions called Extavour CG, Wheeler WC. 2014 Hox gene tagmata. Specification of regional identity is regulated by the Hox genes, of duplications correlate with posterior which 10 are inferred to be present in the ancestor of arthropods. With six heteronomy in scorpions. Proc. R. Soc. B 281: different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression 20140661. domains of the anterior eight Hox genes are conserved in previously surveyed http://dx.doi.org/10.1098/rspb.2014.0661 chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression Received: 19 March 2014 domain boundaries of each of the last four pairs of Hox genes (two paralogues Accepted: 22 July 2014 each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while main- taining spatial collinearity.
    [Show full text]
  • Journal of Cave and Karst Studies
    March 2018 Volume 80, Number 1 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Tel:256-852-1300 Julian J. Lewis & Salisa L. Lewis Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Washington, DC 20460-0001 Bowling Green, KY [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy Scott A. Engel [email protected] Knoxville, TN 225-281-3914 Exploration Paul Burger [email protected] National Park Service Eagle River, Alaska Journal Copy Editor [email protected] Linda Starr Microbiology Albuquerque, NM Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO [email protected] Social Sciences Joseph C. Douglas The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM Volunteer State Community College Number #40065056, is a multi-disciplinary, refereed journal pub- Gallatin, TN lished four times a year by the National Speleological Society.
    [Show full text]
  • Les Scorpions Cavernicoles : Des Animaux Problématiques Cas Français Et Essai D’Inventaire Mondial
    Les scorpions cavernicoles : des animaux problématiques Cas français et essai d’inventaire mondial par Ruben CENTELLES BASCUAS Groupe agenais de spéléologie (GAS47)1 Belisarius xambeui. Cliché Totodu74 Belisarius xambeui jeune. Cliché Totodu74 Buthus occitanus. Cliché Alvaro Rodriguez Alberich on intérêt pour ces arachnides ne date Découverte et origine de son nom Mpas d’hier, et le soin d’un terrarium (aujourd’hui abandonné) m’en a appris Décrite en 1879 par l’arachno- Une légende apocryphe, beaucoup sur ces fascinants animaux. logue Eugène Simon (1848-1924), ayant eu beaucoup de succès au ce scorpion fait partie des six Moyen-Âge, veut que Justinien l’ait Mais c’est une rencontre peu banale qui espèces connues en France. condamné à se crever les yeux m’a redonné de l’intérêt pour cet ordre des Nommé en l’honneur d’un col- et à mener la vie d’un mendiant arachnides. En randonnant dans le Vallespir lecteur de ses amis : le capitaine aveugle, demandant l’aumône à (Pyrénées-Orientales), alors que je profitais Pierre-Joseph-Vincent Xambeu, mili- la Porte Pinciana à Rome. Il était de la fraîcheur des sous-bois, j’ai pu taire de carrière et entomologiste une époque où les natu- amateur ; auteur notamment d’une ralistes possédaient observer un scorpion sortir de la litière. Bélisaire, gravure magistrale Faune entomologique une puissante culture d’Auguste Desnoyers J’avais déjà observé des scorpions à des Pyrénées-Orientales parue en classique. (1810) d’après un tableau de F. Gérard Bordeaux, sur les quais (Euscorpius 1903 (ainsi que de nombreux (1795). flavicaudis), ainsi qu’en Ardèche (Buthus travaux sur les coléoptères).
    [Show full text]
  • Order Scorpiones CL Koch, 1850. In
    Order Scorpiones C.L. Koch, 1850 (2 suborders)1,2,3 †Suborder Branchioscorpionina Kjellesvig-Waering, 1986 (4 infraorders) †Infraorder Bilobosternina Kjellesvig-Waering, 1986 (1 superfamily) †Superfamily Branchioscorpionoidea Kjellesvig-Waering, 1986 (2 families) †Family Branchioscorpionidae Kjellesvig-Waering, 1986 (1 genus, 1 species) †Family Dolichophonidae Petrunkevitch, 1953 (1 genus, 1 species) †Infraorder Holosternina Kjellesvig-Waering, 1986 (10 superfamilies) †Superfamily Acanthoscorpionoidea Kjellesvig-Waering, 1986 (2 families) †Family Acanthoscorpionidae Kjellesvig-Waering, 1986 (1 genus, 1 species) †Family Stenoscorpionidae Kjellesvig-Waering, 1986 (1 genus, 2 species) †Superfamily Allopalaeophonoidea Kjellesvig-Waering, 1986 (1 family) †Family Allopalaeophonidae Kjellesvig-Waering, 1986 (1 genus, 1 species) †Superfamily Archaeoctonoidea Petrunkevitch, 1949 (1 family) †Family Archaeoctonidae Petrunkevitch, 1949 (2 genera, 2 species) †Superfamily Eoctonoidea Kjellesvig-Waering, 1986 (5 families) †Family Allobuthiscorpiidae Kjellesvig-Waering, 1986 (2 genera, 2 species) †Family Anthracoscorpionidae Fritsch, 1904 (4 genera, 6 species) †Family Buthiscorpiidae Kjellesvig-Waering, 1986 (1 genus, 2 species) †Family Eoctonidae Kjellesvig-Waering, 1986 (1 genus, 1 species) †Family Garnettiidae Dubinin, 1962 (1 genus, 1 species) †Superfamily Gigantoscorpionoidea Kjellesvig-Waering, 1986 (1 family) †Family Gigantoscorpionidae Kjellesvig-Waering, 1986 (2 genera, 2 species) †Superfamily Mesophonoidea Wills, 1910 (6 families) †Family Centromachidae
    [Show full text]
  • Arachnides 86, 2018
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 86 2018 Arachnides 86, 2018 SYNOPSIS DES SCORPIONS DU SUD ­EST ASIATIQUE. Gérard DUPRE Résumé. La faune scorpionique de l'Asie du Sud ­est est bien étudiée depuis de nombreuses années et elle a pris un essor important ces dernières décennies sous l'impulsion d'auteurs tels que Kovarik, Lourenço et Pham. Cette région comprend les pays suivants: La Cambodge, le Laos, la Malaisie, le Myanmar, Singapour, la Thaïlande, les Philippines, le Brunei auxquels nous avons rajouté arbitrairement le Bangladesh. Nous avons exclu l'Indonésie d éjà traitée dans un article en 2012. Introduction. Depuis plusieurs années à la demande de nombreux lecteurs, nous avons programmé des synthèses sur la faune scorpionique de diverses régions du monde. Nous avons successivement présenté cette faune dans les pays ou régions suivants: Amérique centrale (2010), Chine (2010), Indonésie (2012), Péninsule arabique (2013), Australie (2014), Japon (2014), USA et Canada (2014), Iran (2015), petits états européens (2015), Proche ­Orient (2015), Paraguay et Uruguay (2016), Turquie (2016), Inde (2017), Mexique (2017), Maroc (2017) et Somalie/Somaliland (2018). ­ De plus nous avons présenté deux études sur la faune insulaire ( Arachnida ­ Rivista Aracnologica Italiana, 2016, 10, suppl.: 3­80) et la faune de îles intér ieures et fluviatiles (2016). Bangladesh. Ce pays de 144 000 km² comprend 4 familles, 5 genres et 5 espèces dont aucune n'est endémique. La seule référence connue est celle d'Ahmed (2009) que nous n'avons pas pu consulter. 1 Arachnides 86, 2018 BUTHIDAE Reddyanus assamensis (Oates, 1888).
    [Show full text]
  • The Evolution and Distribution of Noxious Species of Scorpions (Arachnida: Scorpiones) Wilson R
    Lourenço Journal of Venomous Animals and Toxins including Tropical Diseases (2018) 24:1 DOI 10.1186/s40409-017-0138-3 REVIEW Open Access The evolution and distribution of noxious species of scorpions (Arachnida: Scorpiones) Wilson R. Lourenço Abstract This contribution attempts to bring some general informationontheevolutionand,inparticular,onthegeographic distribution of scorpion species noxious to humans. Since 95% of the scorpions incidents are generated by specimens of the family Buthidae C. L. Koch, the analysis will be limited to this familial group. As in previous similar contributions, the content of this work is mostly addressed to non-specialists whose research embraces scorpions in several fields such as venom toxins and public health. Only in recent years, efforts have been made to create better links between ‘academic scorpion experts’ and other academic non-specialists who use scorpions in their research. Even if a larger progress can yet be expected from such exchanges, crossed information proved to be useful in most fields of scorpion studies. Since the taxonomy of scorpions is complex, misidentifications and even more serious errors concerning scorpion classification/ identification are often present in the general literature. Consequently, a precise knowledge of the distribution patterns presented by many scorpion groups and, in particular, those of infamous species, proves to be a key point in the interpretation of final results, leading to a better treatment of the problems caused by infamous scorpion species. Keywords: Scorpion, Noxious species, Patterns of distribution, Biased results, Buthidae Background present. It is obvious that the order can be considered For many years now, there is a general consensus about modest when compared to that of other arthropods.
    [Show full text]
  • Comparative Study of the Invertebrate Cave Faunas of Southeast Asia and New Guinea
    Historia naturalis bulgarica, 21: 169-210, 2015 Comparative study of the invertebrate cave faunas of Southeast Asia and New Guinea Petar Beron Abstract: An attempt is made to compare the available data on the cave fauna of SE Asia with the cave fauna of New Guinea and the Bismarck Archipelago. The information is very uneven, with many hundreds of caves and cave animals known from SE Asia and almost the only results on the cave fauna of New Guinea obtained during the British Expedition to PNG in 1975. The present analysis outlines the existence of more than 209 troglobites and 42 stygobites in the caves of SE Asia and 18 troglobites and 10 stygobites in the caves of New Guinea and New Ireland. Many of these species are to some extent “troglomorphes”, but their belonging to the caterories of troglobites or stygobites is disputable, as nothing is known in details concerning their biology. The richest groups in troglobites are Isopoda Oniscidea (13 sp. in SE Asia, 1 in New Guinea), Araneae (46 sp. in SE Asia, unfinished study of PNG collection), Pseudoscorpiones (11 sp. in SE Asia, 1 in New Guinea), Diplopoda (30 sp. in SE Asia, 1 in New Guinea), Collembola (28 sp. in SE Asia, 4 in New Guinea), Coleoptera Carabidae (56 sp. in SE Asia, 3 in New Guinea and New Ireland). Particularly interesting is the discovery of a rich cave fauna in the highlands of New Guinea (above 2200 m), wherе the air temperature in the caves is ca. 13 0C, comparable to the temperature in the South European caves.
    [Show full text]
  • Arachnides N°60. 2011 - Sommaire
    The electronic publication Arachnides - Bulletin de Terrariophile et de Recherche N°60 (2011) has been archived at http://publikationen.ub.uni-frankfurt.de/ (repository of University Library Frankfurt, Germany). Please include its persistent identifier urn:nbn:de:hebis:30:3-371872 whenever you cite this electronic publication. ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 60 2011 1 NOUVELLES ESPECES DE SCORPIONS (ARACHNIDA, SCORPIONES) DECRITES EN 2010. G. DUPRE L’année 2010 a été particulièrement féconde en description de nouveaux taxa de scorpions au niveau mondial : - 5 nouveaux genres : Femtobuthus Lowe (Buthidae), Picobuthus Lowe (Buthidae), Riftobuthus Lourenço (Buthidae), Vietbocap Lourenço & Pham (Pseudochactidae) et Kuarapu Francke & Ponce-Saavedra (Vaejovidae). - 62 espèces.(+ 3 espèces revalidées) de 10 familles différentes. BOTHRIURIDAE Simon, 1880 ; 2 nouvelles espèces. Bothriurus nendai Ojanguren-Affilastro & Garcia-Mauro, 2010. (Argentine). Urophonius pizarroi Ojanguren-Affilastro, Ochoa, Mattoni & Prendini, 2010. (Chili). BUTHIDAE C.L. Koch, 1837. 3 nouveaux genres et 30 nouvelles espèces. Ananteris roraima Lourenço & Duhem, 2010f (Brésil). Ananteris madeirensis Lourenço & Duhem, 2010f (Brésil). Buthacus agarwali Zambre & Lourenço, 2010 (Inde). Butheoloides slimanii Lourenço, 2010c (Maroc) Buthoscorpio rayalensis Javed, Rao, Mirza, Sanap & Tampal, 2010. (Inde). Buthus amri Lourenço, Yagmur & Duhem, 2010 (Jordanie). Centruroides fallassisimus Armas & Trujillo, 2010 (Guatémala, Honduras) ; dans le même article, ces auteurs revalident Centruroides granosus (Thorell, 1876) (Panama). Compsobuthus birulai Lourenço, Leguin & Duhem, 2010 (Emirats). Compsobuthus tassili Lourenço, 2010a (Algérie). Femtobuthus Lowe, 2010a avec l’espèce type, Femtobuthus shutuae (Oman). Hottentotta flavidulus Teruel & Rein, 2010 (Afghanistan). Dans cet article, les auteurs transfèrent Mesobuthus songi Lourenço, Qi & Zhu, 2005 dans le genre Hottentotta.
    [Show full text]
  • Phylogenomics of Scorpions Reveal a Co-Diversification of Scorpion Mammalian Predators and Mammal-Specific Sodium Channel Toxins
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.372045; this version posted November 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomics of scorpions reveal a co-diversification of scorpion mammalian 2 predators and mammal-specific sodium channel toxins 3 1,+, 2 1 4 CARLOS E. SANTIBÁÑEZ-LÓPEZ *, SHLOMI AHARON , JESÚS A. BALLESTEROS , GUILHERME 1 1,3 4 5 5 GAINETT , CAITLIN M. BAKER , EDMUNDO GONZÁLEZ-SANTILLÁN , MARK S. HARVEY , 6 6 6 6 MOHAMED K. HASSAN , ALI HUSSIN ABU-ALMAATY , SHOROUK MOHAMED ALDEYARBI , LIONEL 7 8 9 10 7 MONOD , ANDRÉS OJANGUREN-AFFILASTRO , ROBERT J. RAVEN , RICARDO PINTO-DA-ROCHA , 11 2,# 1,# 8 YORAM ZVIK , EFRAT GAVISH-REGEV , PRASHANT P. SHARMA 9 10 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706; 2 National Natural 11 History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel; 3 Department of Organismic and 12 Evolutionary Biology, Harvard University, Cambridge, MA 02138; 4 Laboratorio de Aracnología, Facultad de 13 Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, C.P. 04510 Mexico 14 City, Mexico; 5 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC 15 6986, Western Australia, Australia; 6 Zoology Department, Faculty of Science, Port Said University, Egypt; 7 16 Département des arthropodes et d’entomologie I, Muséum d’histoire naturelle, Route de Malagnou 1, 1208 Geneve, 17 Switzerland; 8 División Aracnología, Museo Argentino de Ciencias Naturales, Av.
    [Show full text]
  • Catalog of the Scorpions of the World (1758-1998) Catalog of the Corpions of the World (1758-1998)
    CATALOG OF THE SCORPIONS OF THE WORLD (1758-1998) CATALOG OF THE CORPIONS OF THE WORLD (1758-1998) Victor Fet Department of Biological Sciences, Marshall University, Huntington, West Virginia, USA W. David Sissom Department of Life, Earth, & Environmental Sciences, West Texas A&M University, Canyon, Texas, USA Graeme Lowe Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA Matt E. Braunwalder Arachnodata, Zurich, Switzerland THE NEW YORK ENTOMOLOGICAL SOCIETY To the memory of Professor MAX/ME (MAX) VACHON (January 4, 1908, Dijon -November 3, 1991, Paris), one of the most innovative and influential scorpiologists of the 20th century, who pioneered modern scorpion taxonomy and inspired research in other fields and to the memory of Gary A. Polis ( 1946-2000) our friend, teacher, scorpion researcher, one of the best people we know Copyright© 2000 by The New York Entomological Society The paper in this book meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Library Materials, ANSI Z39.48-1984. ISBN 0-913-42424-2 This book is available from: The New York Entomological Society c/o Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th Street New York, New York 10024, USA TABLE OF CONTENTS Introduction (V. Fet, W. D. Sissom, G. Lowe, M. E. Braunwalder) . 1 Acknowledgments . 8 Abbreviations . 9 New Taxonomic Changes . 13 Taxonomic Part . 15 Suborder Neoscorpionina . 16 Infraorder Orthosternina . 16 Superfamily Scorpionoidea . 16 Family Bothriuridae (G. Lowe, V. Fet) . 17 Family Buthidae (V. Fet, G. Lowe) . 54 Family Chactidae (W. D. Sissom) . 287 Family Chaerilidae (V.
    [Show full text]
  • Lorenzo Prendini, Ph.D
    Curriculum Vitae: Lorenzo Prendini, Ph.D. Associate Curator, Arachnids & Myriapods Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th Street New York, NY 10024-5192, USA tel: +1-212-769-5843; fax: +1-212-769-5277 email: [email protected] Scorpion Systematics Research Group: http://scorpion.amnh.org RevSys: North American Scorpion Family Vaejovidae: http://www.vaejovidae.com BS&I: Global Survey and Inventory of Solifugae: http://www.solpugid.com AToL: Phylogeny of Spiders: http://research.amnh.org/atol/files Education Ph.D., Zoology, University of Cape Town, South Africa (2001) B.Sc. (Hons), Zoology, University of Cape Town, South Africa, (1995) B.Sc., Botany & Zoology, University of the Witwatersrand, Johannesburg, South Africa (1994) Appointments Associate Curator, Division of Invertebrate Zoology, AMNH (2007–) Assistant Curator, Division of Invertebrate Zoology, AMNH (2002–) Adjunct Appointments Adjunct Professor, Colorado State University (2008–) Research Associate, National Museum of Namibia (2006–) Research Associate, Transvaal Museum of Natural History, Pretoria, South Africa (2004–) Adjunct Professor, Department of Entomology, Cornell University (2004–) Adjunct Professor, Department of Biology, CUNY (2003–) Editorial Positions Associate Editor, ZOOTAXA (2005–) Associate Editor, Cladistics (2004–) Associate Editor, Journal of Afrotropical Zoology (2004–) Professional Affiliations African Arachnological Society; American Arachnological Society; Entomological Society of Southern Africa; The Explorer’s Club (Fellow); International Society of Arachnology (Executive Committee, 2007–); Society of Systematic Biologists; South African Society of Systematic Biology; Willi Hennig Society (Fellow); Zoological Society of Southern Africa. Scientific Publications Peer-reviewed Journal Articles: Prendini, L., Theron. L-J., Van der Merwe, K. and Owen-Smith, N. 1996. Abundance and guild structure of grasshoppers (Orthoptera: Acridoidea) in communally grazed and protected savanna.
    [Show full text]
  • The Genus Vietbocap Lourenço & Pham, 2010 in the Thien Duong
    The genus Vietbocap Lourenço & Pham, 2010 in the Thien Duong cave, Vietnam: A possible case of subterranean speciation in scorpions (Scorpiones: Pseudochactidae) Wilson Lourenço, Dinh-Sac Pham, Thi-Hang Tran To cite this version: Wilson Lourenço, Dinh-Sac Pham, Thi-Hang Tran. The genus Vietbocap Lourenço & Pham, 2010 in the Thien Duong cave, Vietnam: A possible case of subterranean speciation in scorpions (Scorpiones: Pseudochactidae). Comptes Rendus Biologies, Elsevier Masson, 2018, 10.1016/j.crvi.2018.03.002. hal-01772162 HAL Id: hal-01772162 https://hal.sorbonne-universite.fr/hal-01772162 Submitted on 20 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The genus Vietbocap Lourenc¸o & Pham, 2010 in the Thien Duong cave, Vietnam: A possible case of subterranean speciation in scorpions (Scorpiones: Pseudochactidae) Le genre Vietbocap Lourenc¸o & Pham, 2010 dans la grotte Thien Duong, Vietnam : un cas possible de spe´ciation souterraine chez les scorpions (Scorpiones : Pseudochactidae) a, b b b,c Wilson R. Lourenc¸o *, Dinh-Sac Pham , Thi-Hang
    [Show full text]