Prebiotic Chemistry Themed Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oligomeric A2 + B3 Approach to Branched Poly(Arylene Ether Sulfone)
“One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ANDREA M. ELSEN B.S., Wright State University, 2007 2009 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 19, 200 9 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Andrea M. Elsen ENTITLED “One-Pot” Oligomeric A2 + B3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondenstation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science . _________________________ Eric Fossum, Ph.D. Thesis Director _________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination ____________________________ Eric Fossum, Ph.D. ____________________________ Kenneth Turnbull, Ph.D. ____________________________ William A. Feld, Ph.D. ____________________________ Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Abstract Elsen, Andrea M. M.S., Department of Chemistry, Wright State University, 2009. “One-Pot” Oligomeric A 2 + B 3 Approach to Branched Poly(arylene ether sulfone)s: Reactivity Ratio Controlled Polycondensation The synthesis of fully soluble branched poly(arylene ether)s via an oligomeric A 2 + B 3 system, in which the A 2 oligomers are generated in situ, is presented. This approach takes advantage of the significantly higher reactivity toward nucleophilic aromatic substitution reactions, NAS, of B 2, 4-Fluorophenyl sulfone, relative to B 3, tris (4-Fluorophenyl) phosphine oxide. The A 2 oligomers were synthesized by reaction of Bisphenol-A and B 2, in the presence of the B 3 unit, at temperatures between 100 and 160 °C, followed by an increase in the reaction temperature to 180 °C at which point the branching unit was incorporated. -
And Ph-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25
biomolecules Article Concentration- and pH-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25 Ganna Petruk 1,* , Jitka Petrlova 1, Firdaus Samsudin 2 , Rita Del Giudice 3 , Peter J. Bond 2,4 and Artur Schmidtchen 1,5,6 1 Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22241 Lund, Sweden; [email protected] (J.P.); [email protected] (A.S.) 2 Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; [email protected] (F.S.); [email protected] (P.J.B.) 3 Research Centre for Biointerfaces, Department of Biomedical Sciences and Biofilms, Malmö University, 20506 Malmö, Sweden; [email protected] 4 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore 5 Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark 6 Dermatology, Skane University Hospital, 22185 Lund, Sweden * Correspondence: [email protected]; Tel.: +46-46-22-23-315 Received: 18 October 2020; Accepted: 9 November 2020; Published: 19 November 2020 Abstract: Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. -
Structural Mechanisms of Oligomer and Amyloid Fibril Formation by the Prion Protein Cite This: Chem
ChemComm View Article Online FEATURE ARTICLE View Journal | View Issue Structural mechanisms of oligomer and amyloid fibril formation by the prion protein Cite this: Chem. Commun., 2018, 54,6230 Ishita Sengupta a and Jayant B. Udgaonkar *b Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always b-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the b-sheet rich core of the aggregates formed in vitro, to lie in the a2–a3 subdomain of the prion protein, albeit with local stabilities that vary Received 17th April 2018, with the type of aggregate. This feature article describes recent advances in the investigation of in vitro Accepted 14th May 2018 prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying DOI: 10.1039/c8cc03053g aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded rsc.li/chemcomm intermediates and final aggregates. 1. Introduction The prion protein can exist in two distinct structural isoforms: a National Centre for Biological Sciences, Tata Institute of Fundamental Research, PrPC and PrPSc. -
On the Mechanism of Oligomer Formation in Condensations of Alkyl Cyanoacetates with Formaldehyde
Polymer Journal, Vol. 13, No. 10, pp 975-978 (1981) NOTE On the Mechanism of Oligomer Formation in Condensations of Alkyl Cyanoacetates with Formaldehyde J. M. ROONEY Loctite (Ireland) Limited, Whitestown Industrial Estate, Ta//aght, Co. Dublin. Ireland. (Received December II, 1980) KEY WORDS Alkyl Cyanoacetates I Formaldehyde / Condensation Anionic Polymerization I Cyanoacrylate I Chain Transfer I Industrial synthetic routes to the production of Since the apparent activation energy of the over alkyl cyanoacrylate monomers frequently involve all process was found to be similar to that of the base-catalyzed condensations of alkyl cyanoacetates condensation of diethyl dicyanoglutarate with for with formaldehyde to form low molecular weight maldehyde, the addition of diethyl dicyanoglutarate polymers. 1 Early studies attributed polymer for to formaldehyde is assumed to be the rate mation to a stepwise condensation2 of the form,3.4 determining step. CN CN I I CH2 + HCHO _..... CHCH20H I I COOR COOR CN CN CN CN I I I I CHCH2 0H + CH2 -----. CH-CH2-CH + H2 0 I I I I COOR COOR COOR COOR CN CN CN CN I I I I CH-CH2-CH + HCHO -----. CH-CH2-C-CH20H I I I I COOR COOR COOR COOR CN CN CN I I I CH-CH2-C-CH20H + CH2 etc. I I I COOR COOR COOR Subsequently, a kinetic study of the reaction of philic displacement of the hydroxyl group by cya formaldehyde with methyl cyanoacetate5 yielded noacetate anion. Instead, it is postulated that evidence that methyl cyanoacrylate monomer is an essential step in water evolution is the formation of intermediate in oligomer formation. -
Interstellar Formamide (NH2CHO), a Key Prebiotic Precursor
Interstellar formamide (NH2CHO), a key prebiotic precursor Ana López-Sepulcre,∗,y,z Nadia Balucani,{ Cecilia Ceccarelli,y Claudio Codella,x,y François Dulieu,k and Patrice Theulé? yUniv. Grenoble Alpes, IPAG, F-38000 Grenoble, France zInstitut de Radioastronomie Millimétrique (IRAM), 300 rue de la piscine, F-38406 Saint-Martin d’Hères, France {Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, I-06123 Perugia, Italy xINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy kUniversité de Cergy-Pontoise, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000, Cergy-Pontoise, France ?Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France E-mail: [email protected] Abstract Formamide (NH2CHO) has been identified as a potential precursor of a wide variety arXiv:1909.11770v1 [astro-ph.SR] 25 Sep 2019 of organic compounds essential to life, and many biochemical studies propose it likely played a crucial role in the context of the origin of life on our planet. The detection of formamide in comets, which are believed to have –at least partially– inherited their current chemical composition during the birth of the Solar System, raises the question whether a non-negligible amount of formamide may have been exogenously delivered onto a very young Earth about four billion years ago. A crucial part of the effort to 1 answer this question involves searching for formamide in regions where stars and planets are forming today in our Galaxy, as this can shed light on its formation, survival, and chemical re-processing along the different evolutionary phases leading to a star and planetary system like our own. -
Systematic Approach for Chemical Reactivity
SYSTEMATIC APPROACH FOR CHEMICAL REACTIVITY EVALUATION A Dissertation by ABDULREHMAN AHMED ALDEEB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2003 Major Subject: Chemical Engineering SYSTEMATIC APPROACH FOR CHEMICAL REACTIVITY EVALUATION A Dissertation by ABDULREHMAN AHMED ALDEEB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: ____________________________ ____________________________ M. Sam Mannan Kenneth R. Hall (Chair of Committee) (Member) ____________________________ ____________________________ Mark T. Holtzapple Jerald A. Caton (Member) (Member) ____________________________ Kenneth R. Hall (Head of Department) December 2003 Major Subject: Chemical Engineering iii ABSTRACT Systematic Approach for Chemical Reactivity Evaluation. (December 2003) Abdulrehman Ahmed Aldeeb, B.S., Jordan University of Science & Technology; M.S., The University of Texas at Arlington Chair of Advisory Committee: Dr. M. Sam Mannan Under certain conditions, reactive chemicals may proceed into uncontrolled chemical reaction pathways with rapid and significant increases in temperature, pressure, and/or gas evolution. Reactive chemicals have been involved in many industrial incidents, and have harmed people, property, and the environment. Evaluation of reactive chemical hazards is critical to design and operate safer chemical plant processes. Much effort is needed for experimental techniques, mainly calorimetric analysis, to measure thermal reactivity of chemical systems. Studying all the various reaction pathways experimentally however is very expensive and time consuming. Therefore, it is essential to employ simplified screening tools and other methods to reduce the number of experiments and to identify the most energetic pathways. -
Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION................. -
Chapter 6 – the Structure and Reactivity of Molecules the Structure of Molecules This Is the Golden Age of Instrumentation
Chapter 6 – The Structure and Reactivity of Molecules The Structure of Molecules This is the golden age of instrumentation. Many of the techniques you used in organic lab were used a hundred years ago as the sole method of structure determination. Remember the nucleus has been known for just over 100 years! Beginning in the 1920's and 30's through today, we have seen the invention and the development of many analytical techniques used in structure determination. Infrared, NMR, UV-visible (electronic), and ESR spectroscopies, electrochemistry, X-ray crystallography are the major ones. Sixty years ago, an X-ray crystal structure could be an entire Ph.D. dissertation. Today an undergraduate can frequently solve the same structure in a single afternoon. We will talk about some of these methods later in the chapter. Valence Shell Electron Pair Repulsion (VSEPR) Theory While determining molecular structure is increasingly simple, a simple method of predicting structure is still invaluable. The method of choice is VSEPR theory. You saw this in CHM 211 so we'll only briefly review it. This method is a little different from the book’s and can be found in my general chemistry notes. Movable images of the different shapes can be found at http://science.marshall.edu/castella/chm211/vsepr.html (You will need Java® to view this page. Also you will have to use the Java® control panel to add this site to the secure list.). 1) Draw the Lewis structure of the molecule. 2) Determine the base shape of the molecule by adding the number of atoms bound to the central atom to the number of lone pairs on the central atom. -
Interpreting the Periodic Table – Teacher Page
Name: _____________________ Period: ____ Interpreting the Periodic Table – Teacher Page TEKS 8.5 Matter and energy. The student knows that matter is composed of atoms and has chemical and physical properties. The student is expected to: (C) interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements; Pre-Teach This is an activity designed to help students demonstrate an understanding of the arrangement of the periodic table. Students should be familiar with how the periodic table is arranged by atomic number, mass, energy levels, groups, periods, reactivity, valence electrons, reactivity etc. through other forms of presentation before completing this activity. A good activity to help construct this information for students would be the Mr. X activity. Differentiation Having students work together on this activity can be beneficial in some instances, but can also hinder student’s recall of the information. This is intended to be a summative assessment for this particular TEK before moving on to another concept. It is recommended that the assignment be modified so that the patterns could be easier to identify by reducing the number of letters on the “hypothetical periodic table” and strategically placing them on the table so they are closer together. Name: _____________________ Period: ____ Interpreting the Periodic Table Examine the hypothetical periodic table shown below. Use this periodic table to answer the questions that follow. B A D E C G F I H 1. Which pair(s) of elements has the same number of valence electrons? _____________________________________________________________ 2. How many valence electrons do they have? _____________________________________________________________ 3. -
Polymer of Acrylic Acid Oligomer, Its Preparation and Use in Coating And
Europaisches Patentamt European Patent Office © Publication number: 0 036 294 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 81301029.5 © int. ci 3: C 08 F 20/28 © Date of filing: 12.03.81 © Priority: 14.03.80 US 130323 © Applicant: Rohm and Haas Company Independence Mall West Philadelphia, Pennsylvania 191051US) @ Date of publication of application: 23.09.81 Bulletin 81/38 © Inventor: Merritt, Richard Foster 1811 Shelly Lane © Designated Contracting States: Fort Washington Pennsylvania 19034IUS) BE CH DE FR GB IT LI NL SE © Inventor: Larsson, Bjorn Eric Swamp Road Rushland Pennsylvania 18956(US) © Representative: Angell, David Whilton et al, Rohm and Haas Company Patent Department Chesterfield House Barter Street London WC1A2TP(GB) © Polymer of acrylic acid oligomer, its preparation and use in coating and/or impregnating compositions and the moderation of copolymer glass transition temperature using the oligomer. © Acrylic acidacid oligomeroligomer of thethe formulaformula: : 0 0 CH =CH-C-0(CH, •0) H @CH2C n where n has anan average value value (n) (n) of from greater thanthan 1 to 10 is polymerised, alone or with other ethylenicallyethylenicaliy unsaturated monomer, by emulsion or solution polymerisation. When When nn is from 2 to 10 any known polymerisation technique may be used, but emulsion or solution polymerization is preferred. The be used moderate the transition CM monomer may to glass of The polymer be used in < temperature copolymers. may coating and/or impregnating compositions such as inks, caulks, sealants, adhesives, fabric print pastes and non- Gi woven fabric binders. CM CD CO o Q. UJ Croydon Printing Company Ltd. -
Trends in Reactivity in the Periodic Table
Chemistry for the gifted and talented 35 Trends in reactivity in the Periodic Table Student worksheet: CDROM index 18SW Discussion of answers: CDROM index 18DA Topics Trends in reactivity of Groups 1 and 7 and the ionic bonding model. Level Very able students aged 14–16. Prior knowledge Ionic bonding and the Periodic Table. Rationale This activity aims to: • help students develop a tool (flowcharts) to aid organisation of their line of reasoning; • help students explore links between trends in the reactivity of Groups 1 and 7 and atomic structure; • give students the opportunity to use and critically evaluate the relevance of ionisation energy data to the reactivity series of metals; •reinforce the idea of chemical changes being driven by energy changes; and • challenge the idea that Group 1 metals want to give away their outer shell electron. Use This could be used to follow up some work on the Periodic Table where the trends in reactivity in Groups 1 and 7 have been identified. It can be used as a differentiated activity for the more able students within a group. When the students have completed the worksheet they should be given the Discussion of answers sheet. They could check their own work or conduct a peer review of the work of Chemistry for the gifted and talented Trends in reactivity in the Periodic Table Flow charts are sometimes a good way to organise your thoughts into a line of reasoning or logical argument. The example below is about the question of why Group 1 elements get more reactive as you go down the group. -
Random-Sequence Genetic Oligomer Pools Display an Innate Potential For
RESEARCH ARTICLE Random-sequence genetic oligomer pools display an innate potential for ligation and recombination Hannes Mutschler1†‡*, Alexander I Taylor1†, Benjamin T Porebski1, Alice Lightowlers1§, Gillian Houlihan1, Mikhail Abramov2, Piet Herdewijn2, Philipp Holliger1* 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 2REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium Abstract Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification and is mediated by dedicated recombinase enzymes. Here, we describe an innate capacity for non-enzymatic recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and *For correspondence: the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). Correspondence to: ph1@mrc- While DNA, ANA and HNA pools proved inert, RNA (and to a lesser extent AtNA) pools displayed lmb.cam.ac.uk; [email protected] diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the † These authors contributed chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental equally to this work determinant of an innate capacity for recombination, which is shown to promote a concomitant Present address: