Bsc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Bsc Chemistry Subject Chemistry Paper No and Title 8: Physical Spectroscopy Module No and Title 29: Molecular Term Symbols and Selection Rules for Diatomic Molecules. Module Tag CHE_P8_M29 CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. The Hydrogen Molecule Ion – MO Method 4. Molecular Term Symbols 5. Selection Rules 6. Summary CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES 1. Learning Outcomes In this module, we shall learn about (a) The electronic structure of diatomic molecules (b) Molecular term symbols (c) Selection rules for electronic transitions. 2. Introduction Before we discuss the electronic structure of diatomic molecules, let us recapitulate our study of + the quantum mechanical treatment of the hydrogen molecule ion, H2 . You will recall that this is the only one electron system and can be treated exactly using quantum mechanics. However, the treatment uses elliptical coordinates and is difficult to solve. Instead, we use one of the approximate treatments, the Valence Bond (VB) method or the Molecular Orbital (MO) method, which we also continue using for the other molecular systems. Here, we use the Molecular Orbital method, which is based on the Linear Combination of Atomic Orbitals (LCAO) to obtain the molecular orbitals. + We first discuss briefly the results obtained for H2 and then extend to other molecules. 3. The Hydrogen Molecule Ion – MO method In the MO treatment, we construct linear combinations of the atomic orbitals involved in bond formation. In this case, the 1s orbital of each hydrogen atom participates and thus only two orbitals are involved in forming the linear combination. Let us label the two hydrogens as A and B. The linear combinations are then cA A cB B (1) where cA and cB are the coefficients of the two molecular orbitals and ψA and ψB are the wave functions for the 1s orbitals on atom A and B, respectively. Since we started with two atomic orbitals, we will get two molecular orbitals. Figure 1: Bonding of two hydrogen atoms CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES We will use Group Theory to obtain these linear combinations. All homonuclear diatomic molecules belong to the D∞h molecular point group. φ φ D∞h E 2C∞ … ∞σv i 2S∞ … ∞C2 A A A A B B B B B B B A A A χ 2 2 2 0 0 0 We find that the two atoms remain unshifted under the first three operations of the point group, but exchange positions in the last three. Therefore, the character is two for the first three and zero + + for the last three. Inspection of the character table shows that this reduces to Σg Σu . This is an infinite group and usual methods do not work. The two linear combinations are obtained by using the method of projection operators: ( g ) A B (2) ( u ) A B We have used lower case symbols here because it is customary to label molecular orbitals with small Greek letters and molecular states with capital Greek symbols. The first is a bonding orbital, since when we square this wave function, we obtain 2 2 2 2 A B A 2 A B B which shows an accumulation of electron density in the region between the two nuclei, as the middle overlap term has a positive sign. This is called a bonding orbital, while the lower molecular orbital is an antibonding orbital (Fig. 2). The bonding molecular orbital is a bound state with an energy minimum, but the antibonding molecular orbital is an unbound state, and an electron in this orbital spontaneously dissociates. CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES Figure 2: Variation of energy with internuclear distance for the bonding and antibonding orbitals In a similar way, we can combine atomic orbitals of the same energy and symmetry to get the energy level diagram shown in Figure 3 for homonuclear diatomic molecules of the second period. As in the case of atomic states, we start filling electrons into orbitals using the Aufbau principle. 2 For H2, both electrons occupy the 1σg orbital, and the electron configuration is (1σg) . The electron configurations of the second row atoms are shown in Figure 3. Besides the σg and σu orbitals, we also note that there are πg and πu orbitals. The orbitals are labelled according to their angular momentum, denoted by their λ quantum numbers. This is the analogous Greek character for the l quantum number, but unlike the 2l + 1 possible values of the components, there are only two components for each value of λ, except for λ = 0, which has only one component, as follows: λ 0 1 2 3 Designation σ π δ φ Components 0 ±1 ±2 ±3 It can be noted in Figure 3 that there is a change in the energy order after dinitrogen (total number of electrons = 14). Upto N2, s-p mixing occurs, raising the σ level above the π level. As in the CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES case of atomic spectroscopy, it is cumbersome to write the electron configuration. Rather, the molecular state symbol can provide all information Figure 3: Molecular orbital energy level diagrams for the diatomic molecules of the second row elements 4. Molecular Term Symbols 2S+1 As in the atomic term symbols, LJ, we write the analogous term symbol for molecular states 2Σ+1 with the corresponding Greek symbols as ΛΩ. In order to avoid confusion with the molecular term symbol, we continue using S for the spin quantum number. Also, in the case of homonuclear diatomic molecules, instead of the total angular momentum quantum number Ω, we write the parity g or u, as the case may be. Homonuclear diatomic molecules Let us now take up some examples of homonuclear diatomic molecules. Just as for atomic orbitals, the filled molecular orbitals do not contribute to the angular momentum, and the 1 + molecular state with all filled molecular orbitals is designated as Σg . This means that, except B2 and O2, all atoms depicted in Figure 3 have this ground state. CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES 2 For B2, the electron configuration is …(1πu) . We need not consider the inner filled orbitals for finding the state because these contribute zero orbital and zero spin angular momenta. Let us consider the possible arrangements of the two electrons, keeping the Pauli Exclusion Principle in mind. +1 -1 ↑↓ ↑↓ ↓↓ ↓↑↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑↓ Row Mλ MS 1 +2 0 2 0 1 3 0 0 4 0 0 5 0 -1 6 -2 0 The first row has ML = 2 and MS = 0; therefore, it belongs to a single Δ state. Its other component is in row 6. The second row has ML = 0 and MS = 1 and therefore belongs to a triplet Σ state. Its two other components are in rows 3 and 5, leaving row 6 with both ML and MS equal to zero, and hence this is also a Σ state, but is a singlet. We also know that triplet states have symmetric spin components and antisymmetric spatial components, so the triplet state is 3Σ- and the singlet state is 1Σ+. Finally, both electrons are in u orbitals, so the final state is u⊗u = g. We finally have the three states arising from this configuration, i.e. 1Δg, 3Σg- and 1Σg+. Arranged in order of increasing energy according to Hund’s rules, the states are 3Σg- < 1Δg < 1Σg+ The only difference in the case of O2 is that here both unpaired electrons are in πg orbitals, but since the product of two g states is also g, the overall states are the same as for B2. CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES Heteronuclear diatomic molecules For heteronuclear diatomic molecules, the procedure is the same, but the following points must be kept in mind: 1. The two participating orbitals do not have equal energies. The more electronegative atom has lower energy levels. When two orbitals of the same symmetry of the two atoms combine, the lower of the two goes down in energy, and the upper one gets raised in energy. In other words, the lower energy level (bonding) will have more character of the more electronegative element, and the antibonding orbital will have more of the higher energy orbital. 2. The energy scheme is the same as for the corresponding isoelectronic diatomic molecule, i.e. CO will have a similar energy level diagram as N2. 3. Upto 14 electrons, the scheme of nitrogen is followed, but beyond that, the scheme of O2 is followed, i.e. NO will have a similar energy level diagram as O2. 4. Since the centre of symmetry is lost, there is no g or u notation. Instead, we may write the value of Ω as a subscript. --- Example 1 Deduce the term symbol for NO. Solution The MO diagram for NO is shown below: CHEMISTRY PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29 , MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES Besides the 4 core electrons, there are 11 more electrons. The levels up to π2p are completely filled and do not contribute to 1 2 the angular momentum, leaving (π2p*) . Therefore, the term symbol is Π. The possible values of 2 2 Ω are 1+½ and 1-½, i.e.
Recommended publications
  • Coordination Chemistry III: Electronic Spectra
    160 Chapter 11 Coordination Chemistry III: Electronic Spectra CHAPTER 11: COORDINATION CHEMISTRY III: ELECTRONIC SPECTRA 11.1 a. p3 There are (6!)/(3!3!) = 20 microstates: MS –3/2 –1/2 1/2 3/2 + – – + – + +2 1 1 0 1 1 0 + – – + – + 1 1 –1 1 1 –1 +1 – – + + – + 1 0 0 1 0 0 + – – + + – 1 0 –1 1 0 –1 – – – – + – + – + + + + ML 0 1 0 –1 1 0 –1 1 0 –1 1 0 –1 1– 0– –1+ 1– 0+ –1+ + – – + – + –1 –1 1 –1 –1 1 –1 – – + + – + –1 0 0 –1 0 0 + – – + – + –2 –1 –1 0 –1 –1 0 Terms: L = 0, S = 3/2: 4S (ground state) L = 2, S = 1/2: 2D 2 L = 1, S = 1/2: P 6! 10! b. p1d1 There are 60 microstates: 1!5! 1!9! M S –1 0 1 – – – + + – + + 3 1 2 1 2 , 1 2 1 2 – – + – – + + + 1 1 1 1 , 1 1 1 1 2 + + 0– 2– 0– 2+, 0+ 2– 0 2 1– 0– 1+ 0–, 0+ 1– 1+ 0+ + + 1 0– 1– 1– 0+, 0– 1+ 0 1 + + –1– 2– –1– 2+, –1+ 2– –1 2 – – + – – + + + 1 –1 1 –1 , 1 –1 1 –1 – – – + + – + + ML 0 0 0 0 0 , 0 0 0 0 + + –1– 1– –1+ 1–, –1– 1+ –1 1 – – + – + – + + –1 0 –1 0 , 0 –1 –1 0 – – – + – + + + –1 0 –1 –1 0 , 0 –1 0 –1 – – – + + – 1+ –2+ 1 –2 1 –2 , 1 –2 –1– –1– –1+ –1–, –1– –1+ –1– –1+ –2 + – – + + + 0– –2– 0 –2 , 0 –2 0 –2 –3 –1– –2– –1– –2+, –1+ –2– –1+ –2+ Terms: L = 3, S = 1 3F (ground state) L = 2, S = 0 1D L = 3, S = 0 1F L = 1, S = 1 3P 3 1 L = 2, S = 1 D L = 1, S = 0 P The two electrons have quantum numbers that are independent of each other, because the electrons are in different orbitals.
    [Show full text]
  • Review Sheet on Determining Term Symbols
    Review Sheet on Determining Term Symbols Term symbols for electronic configurations are useful not only to the spectroscopist but also to the inorganic chemist interested in understanding electronic and magnetic properties of molecules. We will concentrate on the method of Douglas and McDaniel (p. 26ff); however, you may find other treatments equal or superior to the D & M method. Term symbols are a shorthand method used to describe the energy, angular momentum, and spin multiplicity of an atom in any particular state. The general form is a given as Tj where T is a capital letter corresponding to the value of L (the angular momentum quantum number) and may be assigned as S, P, D, F, G, … for |L| = 0, 1, 2, 3, 4, … respectively. The superscript “a” is called the spin multiplicity and can be evaluated as a = 2S +1 where S is the spin quantum number. The subscript “j” is the numerical value of J, a new quantum number defined as: J = l +S, which corresponds to the total orbital and spin angular momentum of the system. The term symbol 3P is read as triplet – Pee state and indicates that there are two unpaired electrons in a state with maximum orbital angular momentum, L=1. The number of microstates (N) of a system corresponds to the total number of distinct arrangements for “e” number of electrons to be placed in “n” number of possible orbital positions. N = # of microstates = n!/(e!(n-e)!) For a set of p orbitals n = 6 since there are 2 positions in each orbital.
    [Show full text]
  • XSAMS: XML Schema for Atomic, Molecular and Solid Data
    XSAMS: XML Schema for Atomic, Molecular and Solid Data Version 0.1.1 Draft Document, January 14, 2011 This version: http://www-amdis.iaea.org/xsams/docu/v0.1.1.pdf Latest version: http://www-amdis.iaea.org/xsams/docu/ Previous versions: http://www-amdis.iaea.org/xsams/docu/v0.1.pdf Editors: M.L. Dubernet, D. Humbert, Yu. Ralchenko Authors: M.L. Dubernet, D. Humbert, Yu. Ralchenko, E. Roueff, D.R. Schultz, H.-K. Chung, B.J. Braams Contributors: N. Moreau, P. Loboda, S. Gagarin, R.E.H. Clark, M. Doronin, T. Marquart Abstract This document presents a proposal for an XML schema aimed at describing Atomic, Molec- ular and Particle Surface Interaction Data in distributed databases around the world. This general XML schema is a collaborative project between International Atomic Energy Agency (Austria), National Institute of Standards and Technology (USA), Universit´ePierre et Marie Curie (France), Oak Ridge National Laboratory (USA) and Paris Observatory (France). Status of this document It is a draft document and it may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use this document as reference materials or to cite them as other than “work in progress”. Acknowledgements The authors wish to acknowledge all colleagues and institutes, atomic and molecular database experts and physicists who have collaborated through different discussions to the building up of the concepts described in this document. Change Log Version 0.1: June 2009 Version 0.1.1: November 2010 Contents 1 Introduction 11 1.1 Motivation..................................... 11 1.2 Limitations..................................... 12 2 XSAMS structure, types and attributes 13 2.1 Atomic, Molecular and Particle Surface Interaction Data XML Schema Structure 13 2.2 Attributes ....................................
    [Show full text]
  • Atomic Spectroscopy Summary
    ATOMIC SPECTROSCOPY SUMMARY TERM SYMBOLS Because the total angular momentum and energy commute, we can use the angular momentum (L) to label the energy states. Note that electron configurations are ambiguous in that we don’t specify which orbital or which spin each electron has. This means that there are a number of different sets of 푚ℓ and 푚푠 that are consistent with a given configuration. Why are there different energies? Because of electron/electron repulsion and spin-orbit coupling, the ways we can fill the orbitals DO NOT NESCESSARILLY have the same energy. (Remember that we talked about how Hund’s rules come from this. How spin up elelctrons interact less with other spin up electrons in the same subshell.) Components of a Term Symbol: 2푆+1 퐿퐽 RULES FOR TERM SYMBOLS Term Symbols are assigned based on two main rules: 1. Unsöld’s Rule: All filled shells/subshells are ignored when calculating L and S. Basically, all of the electrons will have their contributions to spin and orbital angular momentum canceled by other electrons in the same subshell. 2. “holes”: The state of the “hole” (an empty spot in an orbital where an electron could be but isn’t) is the same as the state of an electron. This means that when we look at a p5 we can pretend it is a p1. This is incredibly useful as it means that instead of 5 electrons to tinker with, you can just act like it is 1. CALCULATING L: L is the Total Angular Momentum L= (sum of ℓ values) ….(smallest positive difference of ℓ values) o 2 s electrons (different shells) L=0+0,…,0-0 L=0 o 1 d electron and 1 p electron L=2+1,…,2-1 L=3, 2, 1 S is the Total Spin S is the total spin quantum number of the electrons in an atom.
    [Show full text]
  • Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A
    S O s Contemporary Chemistry p e s n Acce REVIEW ARTICLE Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A. Odutola* Department of Physics, Chemistry and Mathematics, Alabama Agricultural and Mechanical University, Normal AL 35762, USA Abstract We have computed the term symbols resulting from the coupling of angular momenta of both spin and orbital from the ground state electron configuration. Configurations of equivalent electrons present challenges and were handled by the group theoretical methods. Terms are the combined values of L and S while the combined values of L, S and J defines the level. Key Words: Terms, Term Symbols, Spectroscopic term symbols, State, Level, Sub-level, Equivalent electrons, Non-equivalent electrons, Orbital angular momentum, Spin angular momentum, Spin-Orbital angular momentum, Russell-Saunders Coupling, LS coupling, j-j coupling and multiplicity. Introduction four quantum numbers (n, l, ml, ms). The first three quantum numbers in the set describes the spatial distribution and the Spectroscopic term symbols are very important in classifying last describes the spin state of the electron. n is the principal the electronic states of atoms and molecules particularly in quantum number and it describes the size or the energy level physical and inorganic chemistry [1-4]. There is a vast amount of the shell (or atom). l is the azimuthal or angular momentum of information on the topic of term symbols and techniques quantum number and it describes the shape of the orbital for obtaining these terms in the literature. Many authors gave or the subshell. m is the magnetic quantum number and it credit to such textbooks as Cotton and Wilkinson [5] as well as l describes the spatial orientation or direction of the orbital.
    [Show full text]
  • Synthesis, Structure and Bonding of Actinide Disulphide Dications in the Gas Phase
    Synthesis, structure and bonding of actinide disulphide dications in the gas phase Ana F. Lucena,1 Nuno A. G. Bandeira,2,3,4,* Cláudia C. L. Pereira,1,§ John K. Gibson,5 Joaquim Marçalo1,* 1 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695- 066 Bobadela LRS, Portugal 2 Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Technology (BIST), 16 – Av. Països Catalans, 43007 Tarragona, Spain 3 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 4 Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA § Present address: REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal * Corresponding authors: Nuno A. G. Bandeira, email: [email protected]; Joaquim Marçalo, email: [email protected] Abstract 2+ Actinide disulphide dications, AnS2 , were produced in the gas phase for An = Th and Np by reaction of An2+ cations with the sulfur-atom donor COS, in a sequential abstraction process of two sulfur atoms, as examined by FTICR mass spectrometry. For An = Pu and Am, An2+ ions were unreactive with COS and did not yield any sulphide species. High level multiconfigurational (CASPT2) calculations were performed to assess the structures and 2+ bonding of the new AnS2 species obtained for An = Th, Np, as well as for An = Pu to examine trends along the An series, and for An = U to compare with a previous experimental study and 2+ DFT computational scrutiny of US2 .
    [Show full text]
  • Alkali Metal Spectra
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 8: Alkali metal spectra Module Tag CHE_P8_M8 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron Atoms 4. Electron Orbitals 5. Alkali Metal Spectra 6. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ 1. Learning Outcomes In this module, you will study about the failures of the Bohr theory, which led to the formulation of the quantum theory. You will understand how the new theory could explain the fine structure in the spectra of hydrogen and hydrogen-like ions, and how this theory can be extended to atoms which have a single electron in their outermost shell, i.e. the alkali metal atoms. You should also be able to write the term symbols for simple one-electron systems. 2. Introduction Bohr’s model could only explain the line spectra of hydrogen and hydrogen-like ions. However, it did not even attempt to explain the spectra of multi-electron atoms. Even in the case of hydrogen, higher resolution shows that each line is split into a doublet, which the Bohr theory was clearly unable to explain. Clearly, the Bohr theory was inadequate and a better, universally applicable, theory was required. 3. Multi-electron Atoms The problem with multi-electron atoms is that, not only are there several electrons getting attracted to the same nucleus, they are repelling each other as well. This repulsion is much harder to deal with.
    [Show full text]
  • A. General (10 Points) 2 Points Each ___B. Configurations & Term
    Your name __________________ Grade this page___ Chem 104A - Midterm I Answer Key closed text, closed notes, no calculators There are 70 total points. General advice - if you are stumped by one problem, move on to finish other problems and come back later if time permits. You may use the whole class period. A. General (10 points) 2 Points Each ____ True or false (Enter T or F on line) next to statement: __F__ 1. A 4pz orbital has two radial nodes and 2 angular nodes. It has one angular node – the xy plane. __F__ 2. If the principal quantum number is 3, the orbital shape quantum number (l) can be 0, 1, 2, 3, or 4. The orbital quantum number can only go as high as n-1=l=2; a 3d orbital. __F__ 3. The ratio of the ionization energy for He+ to H is 2:1. The ionization energy goes as Z2, thus the ratio is 4:1. __F__ 4. The ground state of an atom comes from the term with the lowest multiplicity. highest multiplicity __F__ 5. A proper group always has an identity element and a zero element. no need for a zero element B. Configurations & Term Symbols (10 points) 2 Points Each ____ 1. Write out the lowest energy electronic configuration for elemental V. You can use [Ar] for the closed inner shells. [Ar]4s23d 3 2. Write out the symbol for the lowest energy term (circle the multiplicity): A term is a collection of levels with the same L and S. max MS = 3/2 -> S=3/2; max ML=2+1+0 = 3 -> L=3 -> ‘F’ symbol 2S+1L -> 4F 3.
    [Show full text]
  • Part 1 Copyrighted Material
    PART 1 Structures and microstructures COPYRIGHTED MATERIAL 1 The electron structure of atoms number of electrons, each of which carries one unit What is a wavefunction and what information of negative charge. For our purposes, all nuclei can does it provide? be imagined to consist of tightly bound subatomic particles called neutrons and protons, which are together called nucleons. Neutrons carry no charge Why does the periodic table summarise both and protons carry a charge of one unit of positive the chemical and the physical properties of the charge. Each element is differentiated from all elements? others by the number of protons in the nucleus, called the proton number or atomic number, Z.Ina What is a term scheme? neutral atom, the number of protons in the nucleus is exactly balanced by the Z electrons in the outer electron cloud. The number of neutrons in an atomic nucleus can vary slightly. The total number nucleons (protons plus neutrons) defines the mass number, A, of an atom. Variants of atoms that have 1.1 Atoms the same atomic number but different mass numbers are called isotopes of the element. For example, the All matter is composed of aggregates of atoms. element hydrogen has three isotopes, with mass With the exception of radiochemistry and radio- numbers 1, called hydrogen; 2 (one proton and activity (Chapter 16) atoms are neither created nor one neutron), called deuterium; and 3 (one proton destroyed during physical or chemical changes. It and two neutrons), called tritium. An important has been determined that 90 chemically different isotope of carbon is radioactive carbon-14, that atoms, the chemical elements, are naturally present has 14 nucleons in its nucleus, 6 protons and 8 on the Earth, and others have been prepared by neutrons.
    [Show full text]
  • Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K
    Article Cite This: Inorg. Chem. 2018, 57, 13470−13476 pubs.acs.org/IC Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K. Kersi, Casseday P. Richers, Logan J. Giles, Ranjana Dangi, † ‡ § § Benjamin W. Stein, Changjian Feng, Christopher R. Tichnell, David A. Shultz,*, † and Martin L. Kirk*, † ‡ Department of Chemistry and Chemical Biology and College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States § Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States *S Supporting Information ABSTRACT: Dichalcogenolene platinum(II) diimine com- ′ plexes, (LE,E )Pt(bpy), are characterized by charge-separated ′ → dichalcogenolene donor (LE,E ) diimine acceptor (bpy) ligand-to-ligand charge transfer (LL′CT) excited states that lead to their interesting photophysics and potential use in solar energy conversion applications. Despite the intense interest in these complexes, the chalcogen dependence on the lifetime of the triplet LL′CT excited state remains ′ unexplained. Three new (LE,E )Pt(bpy) complexes with mixed chalcogen donors exhibit decay rates that are dominated by a spin−orbit mediated nonradiative pathway, the magnitude of which is proportional to the anisotropic covalency provided by the mixed-chalcogen donor ligand environment. This anisotropic covalency is dramatically revealed in the 13C NMR chemical shifts of the donor carbons that bear the chalcogens and is further probed by S K-edge XAS. Remarkably, the NMR chemical shift differences also correlate with the spin−orbit matrix element that connects the triplet excited state with the ground state. Consequently, triplet LL′CT excited state lifetimes are proportional to both functions, demonstrating that specific ground state NMR chemical shifts can be used to evaluate spin−orbit coupling contributions to excited state lifetimes.
    [Show full text]
  • Bsc Chemistry
    Subject Chemistry Paper No and Title Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module No and Title 11, Electronic spectra of coordination complexes III Module Tag CHE_P7_M11 CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Spinning of an electron 4. Orbital motion of an electron 4.1 Defining an orbital 4.2 Orbital 5. Spin-Orbit coupling 4.1 What is spin-orbit coupling? 4.2 Free ion terms 6. Summary CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III 1. Learning Outcomes After studying this module, you shall be able to Know the difference between spinning and orbital motion of an electron Learn various factors influencing the spin orbit coupling Analyze various free ion terms for different configurations Understand the orbital in an atom along with orbital motion 2. Introduction For multi-electronic atoms and ions, the spin and orbital motion of various electrons are coupled together by spin-orbit coupling or L-S coupling or Russell-Saunders coupling. In this practice the total angular momentum represented by L and total spin angular momentum given by S, combine together to generate a new quantum number given by J. 3. Spinning of an electron A spherical body rotating about a fixed axis that passes through a point at the center of the sphere represents a model that how electron behaves in an atom.
    [Show full text]
  • A COMPARATIVE STUDY of the ATOMIC TERM SYMBOLS of F3 and F11 CONFIGURATION P
    ACPI Acta Chim. Pharm. Indica: 2(1), 2012, 32-45 ISSN 2277-288X A COMPARATIVE STUDY OF THE ATOMIC TERM SYMBOLS OF f3 AND f11 CONFIGURATION P. L. MEENA*, P. K. JAIN, N. KUMAR and K. S. MEENA Department of Chemistry, M. L. V. Govt. College, BHILWARA (Raj.) INDIA (Received : 13.10.2011; Revised : 30.10.2011; Accepted : 31.10.2011) ABSTRACT The term is a particular energy state and term symbol is a label to energy state. The importance of these term symbols has been emphasized in connection with the spectral and magnetic properties of complexes and metal free ions and also provide information about the energy of atomic electrons in orbital’s and total spin, total orbital and grand total momenta of whole atom and electronic configuration. Russell-Saunders (L-S) coupling and j-j coupling schemes are important schemes for determination of terms and term symbols of the atoms and ions of inner transition elements in which electrons are filled in a f sub-shell with azimuthal quantum number 3. The determination of terms and term symbols for fn configuration is very difficult work since there are seven orbital’s in f-sub shell which give large number of microstates. In this proposed work computation is done for calculating all possible terms and term symbols regarding for f3 and f11 configurations without any long tabulation with mental exercise and a comparative study was carried out between the f3 and f11 terms and term symbols. The possible microstates and spectroscopic terms calculated for f3 and f11 configuration (ions M+3) are 364 and 17.
    [Show full text]