Estuarine, Coastal and Shelf Science 62 (2005) 637–653 www.elsevier.com/locate/ECSS

Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea)

Chryssanthi Antoniadou*, Chariton Chintiroglou

Aristotle University, School of Biology, Department of Zoology, P.O. Box 134, Gr-540 06 Thessaloniki, Greece

Received 24 May 2004; accepted 27 September 2004

Abstract

The spatial dispersion of zoobenthos from sublittoral hard substrate communities in the northern part of the Aegean Sea has been studied during summer 1997 and 1998. Material was collected by SCUBA diving, by totally scraping off five replicate quadrates (400 cm2 each) at three depth levels (15, 30, 40 m) from six sites located in Chalkidiki peninsula, plus one in Kavala Gulf. The examination of the 19,343 living specimens collected revealed the presence of 314 . Though the multivariate analyses showed high similarity between stations, the structure of this sciaphilic algal community seems to have an increased spatial heterogeneity. Four distinct facies were recorded in accordance with the occurrence of different algal forms, the degree of hard substrate inclination and the water clarity. A short review on the biodiversity of sublittoral communities in the Mediterranean revealed the affinity between the western and the eastern basin and also among the photophilic and the sciaphilic algal communities. Ó 2004 Elsevier Ltd. All rights reserved.

Keywords: biodiversity; zoobenthos; hard substrate; community dynamic; algal forms; Aegean Sea

1. Introduction intermediate, which is dominated by several hydrozoan species; and the lower, where the sciaphilic algae Ecological studies on hard bottom zoobenthos of the community occurs (Bellan-Santini et al., 1994; Antonia- Mediterranean Sea, mostly concern the Western and dou et al., 2004a,b). The lower infralittoral zone is poorly Central basins (Bitar, 1982; Hong, 1982; Richards, 1983; studied, as opposed to the other two layers (Bellan- Bellan-Santini, 1985; Poulicek, 1985; Giangrande, 1988; Santini et al., 1976; Leung Tack Kit, 1976; Fraschetti Cardell and Gili, 1988; Sarda` , 1991; Fraschetti et al., et al., 2002; Karalis et al., 2003; Chintiroglou et al., 2004a) 2001; 2002; Terlizzi et al., 2002, 2003), whereas the and also, to the circalittoral zone, where the coralligenous relevant reports about the Eastern Mediterranean are community has been studied (True, 1970; Hong, 1982; very limited (Chintiroglou and Koukouras, 1992; Chin- Laborel, 1987; Sartoretto, 1998). The quantitative assess- tiroglou, 1996; Ergen and Cinar, 1997; Morri et al., 1999; ment of the zoobenthic biodiversity within the lower Damianidis and Chintiroglou, 2000; Karalis et al., 2003; infralittoral zone is limited to the work of Marinopoulos Antoniadou, 2004; Chintiroglou et al., 2004a,b). (pers. commun.), who conducted research at the French Three different ecological layers can be distinguished coasts of the Mediterranean, with emphasis on the free within the infralittoral hard substratum, i.e. the upper, motile fauna. Apart from this unpublished report, the where the photophilic algae community is found; the relevant information concentrates on specific taxonomic groups (Giangrande et al., 2003; Terlizzi et al., 2003; * Corresponding author. Antoniadou, 2004; Antoniadou et al., 2004a,b). The study E-mail address: [email protected] (C. Antoniadou).

0272-7714/$ - see front matter Ó 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecss.2004.09.032 638 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653 of the biodiversity in the Mediterranean has obtained salinity-conductivity-O2 meter and Lovibond Checkit a priority status in environmental management (Costello, (pH meter) micro-electronic equipment. Water clarity 1998; Gaston and Spicer, 1998; Bianchi and Morri, 2000), was measured with the Secchi disc. The inclination of however, it cannot be assessed due to paucity of hard substratum was calculated with a clinometer, quantitative data (Stergiou et al., 1997). while the speed and direction of currents were The present study took place at the lower layer of the recorded with the autographic current meter Sensordata infralittoral zone (below 15 m), where the sciaphilic algal as SD-4. community normally occurs on inclined hard substrate (Pe´re` s, 1982). The aim was to detect (1) the spatial 2.2.2. Data collection variability of zoobenthos and (2) the most critical At each site and depth level, sampling was carried out factors that influence its distributional range, adding by SCUBA diving using a 400 cm2 quadrate sampler, by to the understanding of sublittoral community trends. totally scraping off the substrate, including both sessile and motile species (Leung Tack Kit, 1976; Hong, 1982; Karalis et al., 2003). Five replicates were collected 2. Materials and methods during summer of 1997 and 1998. Overall, 75 samples were obtained. All samples were sieved (0.5 mm) and 2.1. Sampling sites preserved in 10% formalin. After the sorting process, the macrofauna was counted and identified at species Seven coastal stations were selected at different level. Algae were also identified and the dominant spe- locations in the northern part of the Aegean Sea cies were recorded. (Fig. 1). All sites share some common physical char- acteristics, such as hard substrate down to 30–40 m 2.3. Statistics depth and inclination bigger than 50  (Antoniadou et al., 2004a). At each site, one to three depth levels were The analysis of phytobenthos was based on the most set (15, 30 and 40 m) for the bathymetrical study of the dominant species in terms of percent cover, in order to lower infralittoral zone. identify the ‘pilot species’ (Bellan-Santini, pers. com- mun.) at each site, that function as a secondary substrate 2.2. Sampling techniques for the distribution of zoobenthos (Abbiati et al., 1987; Giangrande, 1988). 2.2.1. Physico-chemical factors The analysis of zoobenthos was based on the Temperature, salinity, conductivity, dissolved O2 and methods of Karalis et al., (2003) and Chintiroglou pH were measured in the water column with the WTW et al., 2004a,b. Thus, the numerical abundance on a scale

41o

Nautical miles

GREECE 40o

23o 24o

Fig. 1. Map of the study area indicating sampling sites. C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653 639 of 1 m2 (A mÿ2), the mean dominance (mD), the 3. Results frequency (F) and diversity indices (Margalef’s richness, Shannon–Wiener and Pielou’s evenness, based on log2) 3.1. Abiotic factors were calculated. In order to check the null hypothesis that the The values of the main abiotic parameters showed abundance of the dominant taxa does not differ slight variations in relation to depth or location of significantly between sites and depth levels, a two-way sampling sites, e.g. the reduced water clarity at St.5 and ANOVA test was carried out. A logarithmic trans- the decrease in salinity at St.7 (Antoniadou et al., formation (logxC1) was used to normalize the variance 2004b), while water currents follow the general pattern of numerical abundances (Zar, 1984; Clarke and Green, of cyclonic circulation in North Aegean Sea (Stergiou 1988). The data obtained per sampling site were et al., 1997). According to degree of slope, the sam- analyzed with multidimensional scaling techniques, pling sites can be ranked as highly (O80 , St.1, St.3) based on the Bray–Curtis similarity and log transformed moderately (60–80 , St.2, St.4, St.6, St.7) and slightly numerical abundances, using PRIMER package (Clarke (!60 , St.5) inclined. and Warwick, 1994). The significance of the multivariate results was assessed with ANOSIM test. SIMPER 3.2. Community structure analysis was applied to identify the contribution of each species to the overall similarity within a site and the Overall, 19,343 individuals were counted, belonging dissimilarity among sites (Clarke and Warwick, 1994). to 314 species. The dominant taxon, in terms of species The BIOENV procedure was used to examine which richness, was molluscs (56%), followed by polychaetes environmental parameters are related to the observed (27%) and crustaceans (21%). The species richness of biotic pattern (MDS plot) and the degree of this relation the higher taxonomic groups was quite uniform between (Clarke and Warwick, 1994). sites (Fig. 2).

Fig. 2. Taxa contribution to species richness (up) and total abundance (down) per sampling site and depth level. 640 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Table 1 In terms of numerical abundances, four taxa were Two-way ANOVA results (asterisk indicates statistically significant dominant (Fig. 2). The dispersion of these taxa was not differences) equal among the seven sampling sites or the three depth Taxa Spatial distribution Bathymetric distribution levels, (ANOVA results, Table 1). The partial differences Fp F p among sites and depths for polychaetes, bivalves, gastro- Polychaeta 13.39 !0.05* 15.94 !0.05* pods and peracarids are depicted in Fig. 3. Bivalvia 8.22 !0.05* 15.94 !0.05* 13.78 !0.05* 7.48 !0.05* Peracarida 5.43 !0.05* 13.69 !0.05* 3.3. Diversity

The values of diversity indices were high (Table 2). Seventy-one species were common (21 Polychaeta, 2 Richness values (d ) ranged from 9.2 to 16.4, H# values Sipuncula, 25 , 18 Crustacea, 2 Brachiopoda, 2 from 4.4 to 5.6 and J# values from 0.71 to 0.90. At most Echinodermata, 1 Tunicata), according to population of the sites the gastropod Bittium latreillii was the density and frequency (over 60%) values. From these dominant species (mDO50%), while at St.2 and St.4 species only six, i.e. Bittium latreillii, Syllis hyalina, spirorbids and B. latreillii provide approximately 70% Dexamine spinosa, Hiatella arctica, Nereis rava and of the cumulative dominance. These two taxa have Modiolus adriaticus occured at all sites (Appendix). a strong, negative influence on the diversity indices

mA Polychaeta mA Polychaeta 3,5 2,8

3,2 2,6 2,9 2,4 2,6 2,2 2,3 2 2 1,7 1,8

Bivalvia Bivalvia 8 2,5

2,3 6 2,1 4 1,9 2 1,7

0 1,5

Gastropoda Gastropoda 3,4 2,9 3 2,7 2,6 2,5 2,2 2,3 1,8 2,1 1,4 1,9 1 1,7

Peracarida Peracarida 8 5,4

6 4,4

4 3,4

2 2,4

0 1,4 St.1 St.2 St.3 St.4 St.5 St.6 St.7 15 30 40 Sampling sites Depth (m)

Fig. 3. Mean numerical abundance (mA) of the dominant taxa (left: sampling sites, right: depth level). C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653 641

Table 2 Biocoenotic parameters and diversity indices per sites and depth levels Site/depth Biocoenotic parameters Diversity indices level (m) NSdd* JJ* HH* St.1/15 1854 95 12.49 14.13 0.463 0.813 3.042 5.327 St.1/30 2892 116 14.43 16.47 0.422 0.820 2.899 5.615 St.1/40 300 58 9.99 10.80 0.698 0.896 4.093 5.229 St.2/15 3156 82 10.05 11.54 0.416 0.710 2.647 4.480 St.2/30 1412 98 13.37 14.13 0.682 0.820 4.516 5.390 St.3/15 1385 99 13.55 14.10 0.682 0.786 4.523 5.196 St.3/30 1318 95 13.08 13.99 0.629 0.823 4.136 5.396 St.3/30’ 1211 78 10.85 11.94 0.539 0.794 3.391 4.978 St.3/40 360 76 12.74 13.22 0.785 0.876 4.906 5.460 St.4/15 1431 78 10.60 10.81 0.741 0.785 4.657 4.908 St.4/30 2555 90 11.34 12.66 0.484 0.818 3.144 5.300 St.5/15 206 51 9.38 9.21 0.856 0.856 4.855 4.835 St.6/30 424 64 10.41 10.96 0.706 0.825 4.238 4.934 St.7/15 442 70 11.33 11.58 0.794 0.846 4.866 5.168 St.7/30 271 73 12.85 12.91 0.893 0.909 5.527 5.609 d, Margalef’s richness; H, Shannon–Wiener index; J, Pielou’s evenness; S, number of species; N, number of individuals; * refers to the above values after the exclusion of the two dominant taxa.

(especially H and J ), which, consequently, had to be With respect to the zoobenthic species, non-metric recalculated by excluding these taxa. The values of the MDS indicates the separation of the sites in four main indices were thus responding to the large number of groups (Fig. 5) that correspond well to the algal facies. recorded species (Bitar, 1982; Antoniadou et al., 2004a). The discrimination of the four groups is confirmed by one-way ANOSIM (global RZ0:93, p!0:1). SIMPER 3.4. Similarity analysis analysis showed that 10–17 species contribute to 60% of the average similarity of groups and 35–57 species to The study of the similarity of sampling sites was 90%, while 26–50 species contribute to 60% of the focused on phytobenthos and zoobenthos. With respect average dissimilarity of groups and 85–138 species to to the percent cover of the dominant algal species, non- 90% (Tables 3 and 4). The BIOENV procedure showed metric MDS indicates the separation of the sites in four that water clarity is the factor that relates mostly with main groups (Fig. 4), which represent four different the community structure (Spearman rank correlation facies: (1) a facies of the red algal Womersleyella setacea, 0.59), followed by substrate inclination (Spearman rank Polysiphonia sp., Lithothamnion sp. and the green alga correlation 0.48). Halimeda tuna (group A); (2) a facies of the red algal Pseudolithophyllum expansum, Lithophyllum sp., Litho- thamnion sp. and Peyssonnelia sp. (group B); (3) a facies 4. Discussion of the red algal Gelidium pectinatum, P. expansum and the brown alga Cutleria multifida (group C); and (4) The lower infralittoral zone constitutes a particular a facies of the brown alga Padina pavonica and the green ecological unity within the benthic typology of the alga Codium bursa (group D).

C D A 2 4 7 1 4 2 5 5 2 1 15 m 1 B 15 m 3 3 B 30 m 1 A 30 m 3 6 40 m 6 4 40 m 1 C 3 3 3 2 7 1 4 3 Fig. 5. Non-metric multidimensional scaling, based on zoobenthos and Fig. 4. Non-metric multidimensional scaling based on algal cover and the Bray–Curtis similarity index, calculated from root transformed the Bray–Curtis similarity index. Stress value: 0.12. numerical abundance data. Stress value: 0.08. 642 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Table 3 the Mediterranean, via the Spanish coasts, which Ranked species contribution to 50% similarity within groups constitutes a transitional zone between the two seas. Group A (63.7%) Group B (53%) Group C (58.7%) The similarity was high between St.1 and St.3 at all Bittium latreillii Bittium latreillii Bittium latreillii depth layers. This was expected since these two stations Nereis rava Foraminifera Foraminifera share some common characteristics, namely the high Hiatella arctica Syllis hyalina Modiolus adriaticus slope of the rocky substrate (w90 ), great depth and Lyssianassa costae Hiatella arctica Hiatella arctica similar abiotic factors. Next follow St.2 and St.4, which Halocynthia papillosa Modiolus barbatus Copepoda Amphipholis squamata Corophium insidiosum Dexamine spinosa are both on a reef system and have a moderate incline Syllis hyalina Alvania mamillata Glycera tesselata substrate (60–70 ). These four stations plus St.5 are Vermiliopsis Pusillina radiata Pusillina radiata located in the Chalkidiki peninsula. However, St.5 infundibulum discriminates as it hosts a low number of macrobenthic Mysidacea Dexamine spinosa trachea species and individuals. The lowest value in water clarity Eunice vittata Phtisica marina Leptochelia savignyi Lysidice ninetta Syllis hyalina was also recorded at this station, where the inclination Serpula concharum Microdeutopus was slight (55 ) and the substrate is of purely organic anomalus material (dead colonies of the scleractinian Cladocora Phascolosoma granulatum caespitosa). St.6 was placed at 40 m; the main Apseudes latreillei environmental factor is the reduced water clarity, due Gnathia vorax Ophiothrix fragilis to inflows of Strymonas River (Stergiou et al., 1997). Finally, St.7 discriminates mostly due to lower salinity. Its geographic position is the most remote of the stations, with particular hydrological features (Stergiou Mediterranean (Augier, 1982; Pe´re` s, 1982; Bellan- et al., 1997). All sites however showed high similarity Santini et al., 1994) where hydrodynamics, sedimenta- (over 50%), thus one community was detected, i.e. the tion and light are the factors that influence its faunistic sciaphilic algae community (Augier, 1982; Pe´re` s, 1982). structure (Hong, 1982; Terlizzi et al., 2003). Many authors suggest that zoobenthos is commonly Twenty-eight quantitative studies have refered to the related to algal zonation and it is generally affected by hard substrate (including also two algal dominated the presence of different algal forms (Abbiati et al., assemblages on soft bottoms, e.g. maerl and Squamar- 1987; Giangrande, 1988; Fraschetti et al., 2002; Gian- iacea facies) sublittoral communities in the Mediterra- grande et al., 2003; Antoniadou, 2004; Antoniadou nean (Table 5). Thirteen of these deal with the et al., 2004b). The distribution of zoobenthos is photophilic algae community, four with the sciaphilic dependent on the occurrence of the four algal facies. algae, four with the coralligenous, one with maerl and Most of the dominant algal species are sciaphilous, with one with Squamariacea facies, while the rest generally the exception of the photophilous Padina padina and refers to hard substrate. Most of them refer to the upper Codium bursa (Boudouresque, 1984). The bathymetric or middle layer of the infralittoral zone, as only 12 distribution of these species is mainly determined by studies have been conducted deeper than 15 m. Several light, which is the result of two key factors: substrate reports refer to specific taxa (Polychaeta (11), Peracar- inclination and water clarity (dissolved organic matter). ida (1), Mollusca (4)) and twelve include a study of all The BIOENV analysis identified these two factors as the zoobenthic taxa. most related with the biotic pattern. The study of the available data shows that the The sciaphilic algae community has a considerable zoobenthic structure of the sciaphilic algae community spatial heterogeneity. As the SIMPER analysis showed, is similar in the Western and Eastern Mediterranean both similarities within groups and dissimilarities (about 45%). Additionally, a similarity (common between groups were made up of small contribution species) of 35% is observed between the photophilic from a large number of species, indicating a diverse and the sciaphilic algae communities. This is due to the community with a highly complex structure (Dahl and broader distribution of species that characterises the Dahl, 2002). This heterogeneity may be conditioned by photophilic algae community (Bellan-Santini, pers. the presence of several algal species with different commun.). The similarity of the sciaphilic algae architecture (Chemello and Milazzo, 2002). Thus, fan- community with maerl and the facies of Squamariacea, shaped structures and filamentous forms dominate is confined to cases where the red algal genera group A; filamentous, bush like and encrusting forms Peyssonnelia, Lithophyllum, Lithothamnion and Pseudo- group C and encrusting forms group B (MDS plot). The lithophyllum showed increased presence. The highest forms from group A are characterized by higher number of common species was recorded in corallige- diversity and abundance. The first two facies were nous communities of French coasts, while the lowest in recorded at 15 m and 30 m depth, while the third at photophilic algae communities of Spanish coasts. This is 40 m. The facies of encrusting algal occurs mainly on probably due to the inflow of many Atlantic species in vertical substrate at the deeper parts of the infralittoral Table 4 Ranked species contribution to 50% dissimilarity among groups Groups A–B (57.8%) Groups A–C (55.9%) Groups A–D (64.6%) Groups B–C (56.5%) Groups B–D (64.2%) Groups C–D (55.5%)

Lyssianassa costae Bittium latreillii Bittium latreillii Bittium latreillii Bittium latreillii Bittium latreillii 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Foraminifera Spirorbidae Lyssianassa costae Spirorbidae Trypanosyllis zebra Spirorbidae Bittium latreillii Foraminifera Foraminifera Modiolus adriaticus Foraminifera Foraminifera Corophium insidiosum Copepoda Corophium insidiosum Copepoda Modiolus barbatus Glycera tesselata Modiolus barbatus Lyssianassa costae Halocynthia papillosa Caecum trachea Alvania mamillata Modiolus adriaticus Mysidacea Caecum trachea Serpula concharum Microdeutopus anomalus Hiatella arctica Copepoda Alvania mamillata Modiolus adriaticus Amphipholis squamata Glycera tesselata Microdeutopus anomalus Pusillina radiata Nereis rava Glycera tesselata Pomatoceros triqueter Nereis rava Paranthura nigropunctata Alvania mamillata Hiatella arctica Leptochelia savignyi Apseudes latreillei Pusillina radiata Glycera tesselata Leptochelia savignyi Serpula concharum Pusillina radiata Gnathia vorax Leptochelia savignyi Megathiris detruncata Caecum trachea Amphipholis squamata Corophium insidiosum Caecum trachea Hiatella arctica Polygordiidae Dexamine spinosa Glycera tesselata Dexamine spinosa Nassarius incrassatus Gibbula mangus Setia turicolata Gibbula mangus Syllis prolifera Amphipholis squamata Hiatella arctica Eunice vittata Modiolus adriaticus Modiolus barbatus Megathiris detruncata Alvania mamillata Ophiothrix fragilis Amphiglena mediterranea Anatoma crispata Amphiglena mediterranea Ophiothrix fragilis Modiolus barbatus Staurocephalus rubrovittata Alvania mamillata Gwynia capsula Platynereis dumerilii Staurocephalus rubrovittata Microdeutopus anomalus Lithophaga lithophaga Platynereis dumerilii Dexamine spinosa bruguieri Lithophaga lithophaga Halocynthia papillosa Polygordiidae Lentidium mediterraneum Nereis rava Cumella limicola Leptochelia savignyi Lentidium mediterraneum Setia turicolata Sphaerosyllis pirifera Halocynthia papillosa Lentidium mediterraneum Halocynthia papillosa Gibbula mangus Copepoda Dexamine spinosa Phascolosoma granulatum Nereis rava Phtisica marina Cumella limicola Platynereis dumerilii Megathiris detruncata Pusillina radiata Jujubinus exasperatus Dexamine spinosa Lysiannasa caesarea Microdeutopus anomalus Acanthocardia aculeata Megathiris detruncata Pomatoceros triqueter Syllis prolifera Amphiglena mediterranea Cumella limicola Stenothoe monoculoides Sphaerosyllis pirifera Nassarius incrassatus Nereis rava Rissoina bruguieri Lysiannasa caesarea Cumella limicola Eunice vittata Modiolus adriaticus Sphaerosyllis pirifera Chama gryphoides Acanthocardia aculeata Nereis zonata Paranthura nigropunctata Gwynia capsula Megathiris detruncata Lysiannasa caesarea Dosinia exoleta Tanais dulongi Dosinia exoleta Anatoma crispata Acanthocardia aculeata Polydora caeca Aspidosiphon muelleri Vermiliopsis infundibulum Syllis hyalina Chama gryphoides Hiatella arctica Stenothoe monoculoides Gwynia capsula Leptochelia savignyi Microdeutopus anomalus Ophiothrix fragilis Syllis prolifera Jujubinus exasperatus Platynereis dumerilii Raphitoma echinata Staurocephalus rubrovittata Gnathia vorax Raphitoma echinata Polydora caeca Raphitoma echinata Alvania cimex Apseudes latreillei Eunice vittata Nassarius incrassatus Caecum trachea Dosinia exoleta Corophium acherusicum Phascolosoma granulatum Tanais dulongi Gnathia vorax 643 644 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

Table 5 Composition of sublittoral communities in the Mediterranean Researcher Community Depth Area Total number Polychaeta Mollusca Crustacea Diversity (m) of Species species species species (H’ J’ d) Bellan (1964) PA 0.5–2 WM – 84–41c – – – Bellan (1964) C 20–40 WM – 70–42c – – – Bellan (1964) Ma O40m WM – 28–8c – – – Bellan (1964) Sq O40m WM – 108–35c – – – Laubier, pers. commun. C 20–40 WM 429 137–52c 67–30c 50–17 – Bellan–Santini, pers. commun. PA 0.5–2 WM 452 110–54c 76–24c 93–29c – Kocatas, pers. commun. PA 1–3 EM 183 48–18c 44–18c 56–16c – Hong (1982) C 5–35 WM 498 109 135 93 5.8 Richards (1983) HS 1–5 WM – – 41 – – Poulicek (1985) PA, SA 3–30 WM – – 109–50c – – Cardell and Gili (1988) PA 1–3 WM – 71–33c – – – Marinopoulos, pers. commun. PA 3–7 WM 248 74–50c 88–46c 86–29c 5.57 0.70 31.4 Marinopoulos, pers. commun. SA 20–30 WM 140 45–31c 57–38c 38–21c 6.20 0.86 22.4 Marinopoulos, pers. commun. C 30–40 WM 141 42–29c 68–44c 31–21c 6.04 0.84 22.6 Sarda` (1991) PA 1–5 WM – 175–43 – – 3.6 Sarda` (1991) SA 15–40 WM – 100–43 – – 3.9 Chintiroglou and Koukouras (1992) PA 1–5 NA 64 25–14c 13–10c 17–9c – Chintiroglou (1996) HS 3–18 NA – 87–48c – –a – Chintiroglou et al. (2004a) PA 1–3 NA 100 45–20c 9–4c 31–12c 4.11 0.56 10.13 Chintiroglou et al. (2004b) HS 1–8 NA – 24–14c Ergen and Cinar (1997) PA 0.5–5 EM 166 91–45c 27–15c 48–21c – Koukouras et al. (1998) HS 3–18 NA 207 87–48c 53–36c 50–31c – Damianidis and Chintiroglou (2000) PA 1–3 NA – 48–26c – – – Chemello and Milazzo (2002) PA 1–5 WM – – 57–36c – 2.45 Fraschetti et al. (2002) PA 1–2 WM – 58–24c – – – Terlizzi et al. (2003) HS 5–25 WM – – 133–58c – – Giangrande et al. (2003) HS 5–25 WM – 152–52c – – – Present study SA 15–40 NA 314 77 108 59 4.41 0.54 39.6 PA, photophilic algae; SA, sciaphilic algae; C, coralligenous; HS, hard substrate; Ma, maerl; Sq, facies of Squamariacea; WM, Western Mediterranean; EM, Eastern Mediterranean; NA, North Aegean; c, number of species also found in this study.

zone (Boudouresque, 1984). Its main feature is the bio- have a special interest, as this red alga is an introduced construction of substratum through the biosynthetic and probably invasive species (Boudouresque and process of various calcareous algal (i.e. the Verlaque, 2002), which is well distributed in the Peyssonnelia, Lithothamnion, Lithophyllum, Pseudolitho- Mediterranean (Athanassiadis, 1997). It forms paucis- phyllum, etc.). Within group A, a secondary split can be pecific assemblages with increasing turf development, observed, in accordance to the dominant algal where a large amount of sediment is entrapped (Piazzi forms: e.g. fan-shaped forms (Padina pavonica, that and Cinelli, 2000). Thus, the entrapped sediment dominates St.2 and St.4 at 15 m) and filamentous forms increases the complexity of the system, by offering (Womersleyella setacea and Polysiphonia sp., that microhabitats suitable for the settlement of many soft dominate the rest of the stations). The facies of sediment zoobenthic species. A detailed examination of P. pavonica, have been studied in both the Western the ecological preferences of the dominant zoobenthos and Eastern Mediterranean (Bellan-Santini, pers. com- shows that 31% of the species has large ecological mun.; Kocatas, pers. commun.). It occurs on horizontal distribution, as they live in both hard and soft substrate or slightly inclined hard substrates, under low hydrody- communities; 22.7% is typical soft substrate inhabitants, namics and increased light, as this alga is a typical while the rest 46.3% are species related with hard photophilous species (Boudouresque, 1984). However, substrate or meadows (Appendix 1). The hard substrate P. pavonica have been recently reported from shallow biotopes consist of highly complex habitats, leading to water down to 30 m depth in the South Aegean (Cocito a co-occurrence of various species with different eco- et al., 2000) and to a 15 m depth in the North Aegean logical preferences. Ecological diversity is an elementary (present study). It seems that the increased water clarity component of the definition of biodiversity (Gaston and (above 20 m) and the moderate inclination of St.2 and Spicer, 1998). Consequently, these communities, with St.4 ensure sufficient light for the growth of P. pavonica, their rich fauna of typical hard and soft substrate, can while depth favours its occurrence by decreasing the play a key role in the maintenance of biodiversity in the hydrodynamics. The facies of Womersleyella setacea broader geographical area. Appendix 1

Ecological distribution (EC) of species per sampling site Taxa EC St.1 St.2 St.3 St.4 St.5 St.6 St.7 15m 30m 40m 15m 30m 15m 30m 30m’ 40m 15m 30m 15m 30m 15m 30m Foraminifera HS,SS 94 107 21 185 99 127 88 126 17 57 20 13 11 Porifera Agelas oroides (Schmidt, 1864) HS * * * * * * * * * * * * * * *

Aplysina aerophoba (Schmidt, 1864) HS ** 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Chondrosia reniformis (Nardo, 1833) HS,M * * * * * * 2 Coscinoderma sporadense (Voultsiadou, 1991) HS * Diplastrella bistellata (Schmidt, 1864) HS * * * * * * * * * * * * * * * Eryllus euastrum (Schmidt, 1870) HS * * * Halisarca dujardini (Johnston, 1842) HS * Ircinia foetida (Schmidt, 1862) HS ** Ircinia pausifilamentosa (Vacelet, 1961) HS * * Ircinia spinosula (Schmidt, 1862) HS ** Oscarella lobularis (Schmidt, 1862) HS * Petrosia ficiformis (Poiret, 1798) HS * * * * * * * * * * * * * * Spongia officinalis (Linnaeus, 1759) HS * Spongia nitens (Schmidt, 1862) HS * Sycon raphanus (Schmidt, 1862) HS * * * * * Cnidaria Alcyonium palmatum (Pallas, 1766) HS * Balanophylia sp. HS * * * * * * Caryophyllia inornata (Duncan, 1878) HS * * * * * * Caryphyllia smithii (Stokes and Broderip, 1828) HS * Caryophyllia sp. HS * Cladocora caespitosa (Linnaeus, 1767) HS * * * * Cladopsammia sp. HS * Epizoanthus sp. HS * * * * * Eunicella cavolinii (Koch, 1887) Eunicella singularis (Esper, 1791) HS * * * Eunicella verrucosa (Pallas, 1766) HS * * * * * Hoplangia durotrix (Gosse, 1860) HS * * * Leptopsammia pruvoti (Lacaze-Duthiers, 1897) HS * * Leptopsammia sp. HS * * * * Madracis pharensis (Heller, 1868) HS * * * * Polycyathus sp. HS * Stenocyathus vermiformis (Pourtale` s, 1868) HS ** Nematoda SS 42 37 7 36 24 81 34 41 3 59 38 6 15 16 3 Polychaeta Amphiglena mediterranea (Leyding, 1851) PA,HS,M,SS 14 32110 24 74310 415 1 Amphitrite variabilis (Risso, 1826) HS,C,M,SS 2 1 1 2 2 2 1 1 2 Aponuphis bilineata (Baird, 1870) HS,C,Ma,SS 1 Arabella iricolor (Montagu, 1804) HS,C,SS,M 1 Branchiomma bombyx (Dalyell, 1853) HS,SS 2 1 1 3 5 3 1 2 1 1 645 (continued on next page) Appendix 1 (continued) 646 Taxa EC St.1 St.2 St.3 St.4 St.5 St.6 St.7 15m 30m 40m 15m 30m 15m 30m 30m’ 40m 15m 30m 15m 30m 15m 30m Capitella capitata (Fabricius, 1780) SS 3 Chrysopetalum debile (Grube, 1855) C,HS,M,Ma,SS 1 1 1 Dodecaceria concharum (Orsted, 1843) HS,M 1 Dorvillea rubrovittata (Grube, 1855) HS,PA,C,Ma 1 1 5 2 Euclymene oerstedii (Claparede, 1836) SS,HS 1 Eunice oerstedii

(Stimpson, 1854) PA,C,M,Ma 7 1 1 2 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Eunice torquata (Quatrefages, 1865) PA,C,M,Ma 2 3 Eunice vittata (Delle Chiaje, 1929) SS,Ma,HS 22 19 5 8413 61 336 2 48 Euphrosine foliosa C,PA,M,Ma,SS 1 (Audouin and Milne Edwards, 1833) Eusyllis blomstrandi (Malmgren, 1867) PA,Ma,SS 2 1 4 2 1 1 Exogone naidina (Orsted, 1845) PA,M,SS 6 2 1 11 25 1 Ficopomatus enigmaticus (Fauvel, 1923) HS,C 1 Glycera tesselata (Grube, 1863) HS,C,M,Ma,SS 21 13 2 19 18 23 22 13 8 35 88 3 Glycinde nordmanni (Malmgren, 1865) SS,M 1 Goniada maculata (Ortsed, 1843) SS,M 1 Grubeosyllis limbata (Claparede, 1868) SS,M,PA 3 3 9 7 2 Haplosyllis spongicola (Grube, 1855) C,HS 2 2 1 2 1 1 2 2 1 4 231 Harmothoe areolata (Grube, 1860) C,M,HS,SS 1 1 Harmothoe ljungmani (Malmgren, 1867) C,M,SS 11 Harmothoe spinifera (Ehlers, 1864) PA,C,HS,SS 2 1 1 1 4 2 1 2 1 Heteromastus filiformis (Claparede, 1864) SS,HS 3 Hydroides pseudouncinatus (Zibrowius, 1968) HS,C,F 1 1 1 Janita fimbriata (Delle Chiaje, 1822) HS 2 1 1 Jasmineira candela (Grube, 1863) HS,SS 1 1 4 Kefersteinia cirrata (Keferstein, 1862) C,HS,M,Ma,SS 1 1 2 1 1 1 1 Laetmonice hystrix (Savignyi, 1820) C,M,SS 2 Laonice cirrata (Sars, 1851) SS 1 Lumbrineris coccinea (Renier, 1804) PA,C,Ma, 1 1 Lysidice ninetta HS,C,M,Ma,SS 4 5 3 66 3 7 9 8 2 49 (Audouin and Milne Edwards,1833) Marphysa fallax (Marion and Bobretzky, 1875) HS,C,M,SS 1 3 Nematonereis unicornis (Grube, 1840) HS,PA,M,SS 3 3 3 10 11 411 Nereis rava (Ehlers, 1868) HS,C,M,Ma,SS 31 12 61350 20 3 1 54 33 15 11 24 14 Nereis zonata (Malmgren, 1867) HS,C,M,Ma,SS 4 1 1 8 17 2 1 1 11 56215 Onuphis sp. SS 1 Palola siciliensis (Grube, 1840) C,M,SS,Ma 14 Phyllodoce madeirensis (Langerhans, 1880) HS,C,SS 1 1 1 Pionosyllis lamelligera (Saint-Joseph, 1856) C,M,Ma,SS 1 1 1 1 1 1 Placostegus crystallinus (Zibrowius, 1968) HS,C,F 2 Platynereis dumerilii HS,PA,C,M,SS 14 7 3 2 22 46 30 17 3 2 4 (Audouin and Milne Edwards, 1833) Polycirrus aurianticus (Grube, 1860) HS,PA,M,C 1 Polydora caeca (Orsted, 1843) HS,SS 8 Polygordiidae (archianelida) SS 1 3 Polyopthalmus pictus (Dujardin, 1839) HS,M,SS 1 15 1 Pomatoceros triqueter (Linnaeus, 1865) HS,C,F 1 4 6 2 3 6 Protula sp. HS,C 1 1 1 1 1 Pterosyllis formosa (Claparede, 1863) PA,M 1 Sabella fabricii (Kroyer, 1856) C,M,Ma,SS 2 Sabella pavonina (Savignyi, 1820) C,M,Ma,SS 2 1 Sclerocheilus minutus (Grube, 1863) HS,C,M,SS 1 Scoletoma funchalensis (Kinberg, 1865) HS,PA,Ma,SS 2 1 3 7 3 1 10 1 Serpula concharum (Langerhans, 1880) HS,C,F 1 3 1 3 1 47 Serpula vermicularis (Linnaeus, 1767) HS,C,F 2 1 2 Spermosyllis torulosa (Claparede, 1864) SS 1 1 .Atnao,C hniolu/Etaie osa n hl cec 2(05 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Sphaerosyllis pirifera (Claparede, 1868) HS,M,Ma 19 21 2610 26 10 11 4 3 231 Spirorbidae HS,F 1876 182 145 Syllidia armata (Quatrefages, 1865) HS,M,SS 2 Syllis amica (Quatrefages, 1865) HS,C,PA 1 9 Syllis armillaris (Muller, 1771) HS,PA,M,SS 2 Syllis cornuta (Rathke, 1843) HS,PA,C,M,SS 7 7 4 2 11 715 411191 3 3 Syllis gracilis (Grube, 1840) HS,C,M,SS 112 Syllis hyalina (Grube, 1843) HS,C,SS 34 20 10 24 9 24 19 13 21 32 14 13 9 6 11 Syllis krohnii (Ehlers, 1864) HS,PA,C,M,SS 2 1 1 Syllis prolifera (Krohn, 1852) HS,PA,M,SS 16 6 2 12 5 13 23 314 8 55 1 Syllis vittata (Grube, 1840) HS,PA,M,Ma 6 1 Terebella lapidaria (Linneaus, 1767) PA,HS,M,SS 1 1 Terebellides stroemi (Sars, 1835) SS 1 5 Theostoma oerstedi (Claparede, 1864) PA 1 Trypanosyllis coeliaca (Claparede, 1868) PA,HS,Ma 1 2 2 7 2 2 4 1 1 2 2 Trypanosyllis zebra (Grube, 1860) HS,PA,C,SS 7 2 1 3 8 3 1 1 1 9 2 6 2 Vermiliopsis infundibulum (Gmelin, 1788) HS,C,F 1 2 1 7 13 23 3 5109 6 10 5 Vermiliopsis labiata (Costa, 1861) HS,C 1 11 Xenosyllis scabra (Ehlers, 1864) M,Ma,SS 1 Sipuncula Aspidosiphon muelleri (Diesing, 1851) C,Cr 15 5 2 17 1 18 23 12 21273 Phascolosoma granulatum (Leuckart, 1828) C,Cr 10 12 99 42 323 12 6 247 Platyhelminthes U 1 Mollusca Acanthocardia aculeata (Linnaeus, 1758) SS 1 2 8 4 1 2 20 21 1 4 Acanthocardia tubercolata (Linnaeus, 1758) SS 2 2 1 2 Acanthochitona fascicularis (Linnaeus, 1767) HS 1 1 111 Acmaea virginea (Mueller O.F., 1776) HS,PA 1 2 Anatoma crispata (Fleming, 1828) DC 7 3 2113 13 5 11 Anomia ephippium (Linnaeus, 1758) HS,F 1 1 2 1 Alvania aspera (Philippi, 1844) PA 1 Alvania semistriata (Montagu, 1808) PA 2 1 2 Alvania cimex (Linnaeus, 1758) PA 8 31 221923 5 6 11 3 2 53 Alvania discors (Allan, 1818) SS,M 54 Alvania mamillata (Risso, 1826) PA,C 18 88 10 3 712341716 23 3 4 Arca tetragona (Poli, 1795) HS 2 2 2 2 10 64 2 1826 3 6 Ascobulla fragilis (Jeffreys, 1856) M 1 Barbatia pulchella (Reeve, 1844) HS 1 647 (continued on next page) Appendix 1 (continued) 648 Taxa EC St.1 St.2 St.3 St.4 St.5 St.6 St.7 15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m 15 m 30 m 15 m 30 m 15 m 30 m Barbatia scabra (Poli, 1795) C 1 Benthonella tenella (Jeffreys, 1856) CTM 3 Bittium latreillii (Payraudeau, 1826) HS,PA,C 1131 1880 121 340 400 414 547 629 90 254 1510 1 138 87 26 Bolma rugosa (Linnaeus, 1767) PA,C 2 Buccinulum corneum (Linnaeus, 1758) PA,DC 1 Caecum trachea (Montagu, 1803) DC 38 33 4 4 44 20 27 45 88 4 7 .Atnao,C hniolu/Etaie osa n hl cec 2(05 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Callistochiton pachylasmae (Monterosato, 1878) C 1 Callochiton septemvalvis (Montagu, 1803) HS 1 11 Chama (Psilopus) gryphoides (Linnaeus, 1758) HS 1 1 1 3 2 Chiton olivaceus (Spengler, 1797) HS 11 Chlamys varia (Linnaeus, 1758) HS,SS 1 3 1 3 Chrysallida doliolum (Philippi, 1844) SS 4 5 1 1 2 Cerithium vulgatum (Bruguiere, 1792) PA 2 1 1 3 2 8 10 1 Cerithiopsis tubercolaris (Montagu, 1803) DC 2 4 113111 1 4 1 Clanculus corallinus (Gmelin, 1791) PA,C 1 1 1 1 Clanculus jussieui (Payraudeau, 1826) PA 1 Clavus maravignai (Bivona, 1838) SS 1 Conus mediterraneus (Hwass in Bruguiere, 1792) PA 1 Cylichnina umbilicata (Montagu, 1803) CTM 2 1 1 1 1 Dendrodoris sp. PA 1 Discodoris atromaculata (Bergh, 1880) PA,C,G 1 Dosinia exoleta (Linnaeus, 1758) SS 1 16 2 4 4 37 Emarginula adriatica (Costa O.G., 1829) HS,M 1 Emarginula huzardii (Payraudeau, 1826) HS 2 Emarginula octaviana (Coen, 1939) HS 1 1 2 1 1 1 Engina leucozona (Philippi, 1843) PA 1 Epitonium communis (Lamarck, 1822) PA 1 Erato voluta (Montagu, 1803) DC 1 Euspira macilenta (Philippi, 1884) SS 2 1 1 Fasciolaria lignaria (Linnaeus, 1758) PA 1 Folinella excavata (Philippi, 1836) SS 2 11 111512 2222 Fusinus pulchellus (Philipi, 1884) C,G 1 1 Gibbula adansonii (Payraudeau, 1826) SS,M 1 Gibbula mangus (Linnaeus, 1758) DC 15 34 25218 14 15 123 3 Hadriana oretea (De Gregorio, 1885) SS,DC 1 Haedropleura septangularis (Montagu, 1803) SS 1 Haminaea navicula (DaCosta, 1778) SS 3 9 2145 2 Hiatella arctica (Linnaeus, 1767) HS,C 17 10 6784938312010382434592211 Homalopoma sanguineum (Linnaeus, 1758) M,C 2 5 3 2 5 1 Hypselodoris webbi (D’Orbignyi, 1839) PA 1 Irus irus (Linnaeus, 1758) C 1 1 131412 321 Jujubinus exasperatus (Pennant, 1777) C 1 10 1 3 8 6 13 41 6 1 2 Lentidium mediterraneum (Costa O.G., 1839) SS 1 7 2 2 5 11 3 3 66 Lepidochiton monterosatoi (Kaas and Van Belle, 1981) HS 1 1 1 1 Lima lima (Linnaeus, 1758) HS,C 1 Limapontia capitata (Mueller, 1774) U 1 Limatula subovata (Jeffreys, 1876) HS,DC,C 4 3 1 3 3 6 Lithophaga lithophaga (Linnaeus, 1758) HS,Cr 152 Lucinella divaricata (Linnaeus,1758) SS 17 41 2812 Luria lurida (Linnaeus, 1758) PA 1 attenuata (Montagu, 1803) SS 1 Mangelia vauquelini (Payraudeau, 1826) M 2 1 1 1 Manzonia crassa (Kanmacher, 1798) M 2 7 1 3 2 1 1 2 Marshallora adversa (Montagu, 1803) U 1 Melanella polita (Linnaeus, 1758) SS,M 1 1 1 1 1 Metaxia metaxae (Delle Chiaje, 1828) M 13 Mitra cornicula (Linnaeus, 1758) PA,M,SS 1 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Mitrolumna olivoidea (Cantraine, 1835) PA 1 1 1 1 1 Modiolus adriaticus (Lamarck, 1819) DC,SS 23 19 1 165 49 85 28 29 97 38 5 15 7 3 Modiolus barbatus (Linnaeus, 1758) HS,M 1 27 13 9 42 3 12 7 16 411 4 Monophorus perversus (Linnaeus, 1758) PA,M 2 5 1 Muricopsis cristata (Poiret, 1883) PA 3 Musculus costulatus (Risso, 1826) HS 2 3 1333 1 1 Myrtea spinifera (Montagu, 1803) SS 1 1 2 24 1 Nassarius incrassatus (Stroem, 1768) PA,SS 1 1 13 5 Nassarius limata (Chemnitz, 1795) PA,SS 1 Ocinebrina aciculata (Lamarck, 1822) PA 1 Odostomia conoidea (Brocchi, 1814) SS,M 3 11 Omalogyra atomus(Philippi, 1841) SS 1 1 1 1 Paradoris indecora (Bergh, 1881) PA 1 Payraudeautia intricata (Donovan, 1804) M 2 1 Petalifera petallifera (Rang, 1828) U 1 Philbertia densa (Monterosato, 1884) PA 1 Philine catena (Montagu, 1803) M,SS,DC 1 Pirenella conica (Blainville, 1826) SS 1 1 1 Pleurobranchus membranaceus (Montagu, 1815) DC 1 Pseudosimnia carnea (Poiret, 1789) C,G 1 1 Pseudotorinia architae (Costa O.G., 1841) DC 1 Pusillina radiata (Philippi, 1836) PA 16 56 8 4 17 48 74 32 7 6141312 Raphitoma echinata (Brocchi, 1814) C 4 22 3 3 5 10 1 8 41 Raphitoma concinna (Scacchi, 1836) PA,C 1 Raphitoma leufroyi (Michaud, 1828) C 2 2 2 2 1 1 1 Rissoa violacea Desmarest, 1814) PA,SS 1 Rissoina bruguieri (Payraudeau, 1826) M 9 38 4 4214 18 711123 Setia turricolata (Monterosato, 1884) PA 7 10 10 3 3 Skeneopsis planorbis (Fabricus, 1780) U 1 Stramonita haemastoma (Linnaeus, 1758) PA 11 1 Striacta lactea (Linnaeus, 1758) HS 11 Tricolia pullus PA,M 1 6 pullus (Linnaeus, 1758) Truncatella subcylindrica (Linnaeus, 1767) SS 1 Turbonilla lactea (Linnaeus, 1758) SS 2 1 1 Umbraculum umbraculum (Roeding, 1798) C,DC 1 Vexillum littorale (Philippi, 1843) PA 1 Vexillum tricolor (Gmelin, 1791) PA 1 3 1 2 1 2 649 (continued on next page) Appendix 1 (continued) 650 Taxa EC St.1 St.2 St.3 St.4 St.5 St.6 St.7 15 m 30 m 40 m 15 m 30 m 15 m 30 m 30 m’ 40 m 15 m 30 m 15 m 30 m 15 m 30 m Crustacea Achaeus cranchii (Leach, 1817) LED 1 1 1 Achelia echinata (Hodge, 1864) HS 1 Alpheus dentipes (Gue´rin-Me´neville, 1832) LED 3 3 1 Ampelisca scarsi (Cheuvreux, 1888) DC,CTM,SS 1 Amphithoe ramondii (Audouin, 1826) PA,M 1 .Atnao,C hniolu/Etaie osa n hl cec 2(05 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Aora spinicornis (Afonso, 1976) PA,M 5 7 Apseudes intermedius (Milne-Edwards, 1828) PA,HS,DC 2 3 3 4 2 2 6 3 Athanas nitescens (Leach, 1814) LED 10 22 1 2 1 Balanus a. amphitrite (Darwin, 1854) HS 1 Caprella acanthifera (Leach, 1814) PA,C,M,F 1 2 38 1 16 Caprella rapax (Mayer, 1890) PA 1 221 4 9 21 12 Cestopagurus timidus (Roux, 1830) LED 10 4 Chelonibia sp. HS 1 Collomastix pusilla (Grube, 1861) PA,C,M,DC,SS 11 Copepoda U 38 19 1 56 42 59 21 99 89 3 4 Corophium acherusicum (Costa, 1851) PA,F 8 Corophium acutum (Cheuvreux, 1908) PA,M,F 3 1 1 Corophium insidiosum (Crawford, 1937) PA,F,SS 916 Cumella limicola (G.O. Sars, 1879) HS,M,SS 2 20 1 6 10 22 12 21931 Cymodoce truncata (Montagu, 1804) HS,M,SS 5 1 1 Dexamine spiniventris (Costa, 1853) PA,M 11 3 1 1 Dexamine spinosa (Montagu, 1813) PA,C,M,SS 17 31 6 23 17 28 28 16 3 22 28 2 25 1 3 Endeis spinosa (Montagu, 1808) HS 1 Eualus occultus (Lebour, 1936) LED 2 1 Eurydice truncata (Norman, 1868) SS 1 Eusirus longipes (Boeck, 1861) CTM,SS 1 Galathea intermedia (Lilljeboorg, 1851) LED 1 Gnathia vorax (Lucas, 1849) PA,HS,M,SS 1 1 1 5 5 3 Gnathia praniza stage PA,HS,M,SS 1 6141 2 74 Hyale camptonyx (Heller, 1866) PA 3 4 64 Idotea baltica PA,HS,M 1 2 10 9 2 1 3 20 121 basteri (Audouin, 1827) Iphinoe sp. SS 51 2153 1 1 Leptocheirus pectinatus (Norman, 1869) PA,C 1 Leptochelia savignyi (Kroyer, 1842) PA,HS,M,SS 23 11 5 29114011 4285 32 1 9 1 Leucothoe spinicarpa (Abildgaard, 1789) PA,M,F,CD,SS 11 Liljeborgia psaltrica (Krapp-Schickel, 1975) DC,SS 1 Lysianassa caesarea (Ruffo, 1978) PA 1 15 1 2 15 19 75 15194 11 Lysianassa costae (Milne-Edwards, 1830) PA,MDC,SS 5161 10 Lysianassa longicornis (Lucas, 1849) PA,M,CTM,SS 1 1 3 Lysianassa plumosa (Boeck, 1871) DC,CTM,SS 1 Lysmata seticaudata (Risso, 1816) LED 1 Metaphoxus simplex (Bate, 1857) DC,CTM,SS 1 3 1 2 3 5 Microdeutopus anomalus (Rathke, 1843) PA,M,F 14 11 41 19 15 12 3139 17 10 1 10 Mysidacea U 1 8 1 3 1 5 4 Orchomene humilis (Costa, 1853) PA,M 2 1 2 1 Pagurus anachoretus (Risso, 1827) LED 1 Pagurus sp. LED 1 1 Paradoxostoma sp. U 1 2 Paranthura nigropunctata (Lucas, 1849) PA,HS,M 2 1 2 5 4 Perioculodes longimanus (Bate and Westwood, 1868) CTM,SS 1 1 Phtisica marina (Slabber, 1749) PA,C,DC,SS 3 6 3 126313 Pilumnus spinifer (H. Milne-Edwards, 1834) LED 2 1 Pisa armata (Latreille, 1803) LED 1 .Atnao,C hniolu/Etaie osa n hl cec 2(05 637–653 (2005) 62 Science Shelf and Coastal Estuarine, / Chintiroglou C. Antoniadou, C. Pisa mucosa (Linnaeus, 1758) LED 1 Pseudocuma longicornis (Bate, 1858) SS 1 2 Pycnogonum littorale (Storm, 1762) HS 1 Scyllariidae U 1 Stenothoe monoculoides (Montagu, 1815) PA,M 2 3 3 1 5 2 Synchelidium longidigitatum (Ruffo, 1947) PA,M,DC 3 1 Tanais dulongii (Audouin, 1826) PA,HS,M,SS 2 7 1 1 3 2 6 Thoralus cranchii (Leach, 1817) LED 2 1 5 1 1 1 6 Unidentified sp. 1 U 2 Urothoe elegans (Bate, 1857) DC,CTM,SS 1 Verruca spengleri (Darwin, 1854) HS 2 1 Bryozoa Bicellariela ciliata (Linnaeus, 1758) HS * * * * * * * * * * * * * * Bugula stolonifera (Ryland, 1960) HS * Chorizopora brongriatii (Audouin, 1826) HS * Cibrillina punctata (Hassall, 1841) HS * * * Crisia sp. HS * Cryptosula pallasiana (Moll, 1803) HS * Electra pilosa (Linnaeus, 1767) HS * * * * * * * * * Escharoides coccinea (Abildgaard, 1806) HS * Lichenopora radiata (Audouin, 1826) HS 2 2 2 6 1 3 2 Microporella ciliata (Pallas, 1766) HS * * Pentapora fascialis (Pallas, 1766) HS * * * * * * * * * Plagioecia patina (Lamarck, 1816) HS * * * * Reptadeonella violacea (Johnston, 1847) HS * * * * * * * * * * * * * Reteporella septentrionalis (Harmer, 1933) HS * * * * * * * * * Schizoporella unicornis (Johnston, in Wood, 1844) HS * * * * * Scruparia sp HS * * * * * * Smittina landsborovi (Johnston, 1847) HS * * * * Smittoidea reticulata (MacGillivray, 1842) HS Tubulipora phalangea (Couch, 1844) HS * * * * * * * * * * Brachiopoda Gwynia capsula (Jeffreys, 1859) HS,C 5 1 1 1 16 17 Megathiris detruncata (Gmelin, 1790) HS,C 1 26 5 13 25 3 12 7 Echinodermata Amphipholis squamata (DelleChiaje, 1829) LED 1 9 1 1 2 1 1 3 2 6 22 7 Asterina gibbosa (Pennant, 1777) HS 1 Centrostephanus longispinus (Philippi, 1845) HS,C 1 1 1 1 651 (continued on next page) 652 C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653

References 2 ) and 2 ÿ Abbiati, M., Bianchi, C.N., Castelli, A., 1987. Polychaete vertical zonation along a littoral cliff in the west Mediterranean. P.S.Z.N.I: 43 911 Marine Ecology 8, 33–48. Antoniadou, C., 2004. Crustaceans distribution pattern on vertical cliffs in the North Aegean (Eastern Mediterranean). Fresenius Environmental Bulletin 13, 726–732. Antoniadou, C., Koutsoubas, D., Chintiroglou, C., Molluscan fauna from infralittoral hard substrate assemblages in the North Aegean Sea. Belgian Journal of Zoology, in press. Antoniadou, C., Nicolaidou, A., Chintiroglou, C., Polychaetes associated with the sciaphilic algae community in the North Aegean Sea: spatial and temporal variability. Helgoland, Marine Research, in press. ttoms; CTM, coastal terrigenous mud; LED,

1 Athanassiadis, A., 1997. North Aegean Marine Algae IV. Womer-

of dominant species per sampling site (A m sleyella setacea (Hollenberg) R.E. Norris (Rhodophyta, Ceram- iales). Botanica Marina 40, 473–476. Augier, H., 1982. Inventory and Classification of Marine Benthic Biocenoses of the Mediterranean. Council of Europe, Publication Section, Strasbourg, 45 pp. Bellan, G., 1964. Polychaetes des horizons supe´rieurs de l’e´tage infralittoral rocheux dans la re´gion Provenc¸ale. Te´thys 1, 349–366. Bellan-Santini, D., Desrosiers, G., Brethes, J.C., 1976. Action du rejet thermique de l’usine de Martigues-Ponteau sur les peuplements de substrat durs a dominance de zoobenthos dans la partie supe´rieure de l’e´tage infralittoral. Te´thys 8, 83–92. Bellan-Santini, D., 1985. The Mediterranean Benthos: reflections and problems raised by a classification of the benthic assemblages. In: Moraitou-Apostolopoulou, M., Kiortsis, V. (Eds.), Mediterranean Marine Ecosystems. NATO Conference Series, 1. Ecology, NATO, pp. 19–48. Bellan-Santini, D., Lacazet, J.C., Poizat, C., 1994. Les bioce´noses marines et littorales de Me´diterrane´e, synthe` se, menaces et perspectives. Muse´um National d’Histoire Naturelle, Paris, 246 pp. Bianchi, C.N., Morri, C., 2000. Marine biodiversity of the Mediter- ranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin 40, 367–376. Bitar, G., 1982. Influence d’un grand e´missaire urbain sur la distribution du zoobenthos de substrat dur dans la re´gion de Marseille (Me´diterrane´e nord-occidentale). Te´thys 10, 200–210. 15m 30m 40m 15m 30m 15m 30m 30m’ 40m 15m 30m 15m 30m 15m 30m Boudouresque, C.F., 1984. Groupes e´cologiques d’algues marines et phytocenoses benthique en Me´diterrane´e occidentale: une revue. Giornale Botanica Italiana 118, 7–42. Boudouresque, C.F., Verlaque, M., 2002. Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Marine Pollution Bulletin 44, 32–38. Cardell, M.J., Gili, J.M., 1988. Distribution of a population of annelid polychaetes in the ‘‘trottoir’’ of the midlittoral zone on the coast of North-East Spain, Western Mediterranean. Marine Biology 99, 83–92. Chemello, R., Milazzo, M., 2002. Effect of algal architecture on associated fauna: some evidence from phytal mollusks. Marine Biology 140, 981–990. Chintiroglou, C., 1996. Feeding guilds of polychaetes associated with Cladocora caespitosa (L.) (Anthozoa, Cnidaria) in the North Aegean Sea. Israel Journal of Zoology 42, 261–274. Chintiroglou, C., Antoniadou, C., Baxevanis, A., Damianidis, P., Karalis, P., Vafidis, D., 2004a. Peracarida populations of hard (Roule, 1885) HS,C (O.F.Muller, 1776) SS,DC,CTM 1 5 7 5 1 9 )

(Linnaeus, 1767) HS,C,G 3substrate assemblages 1 in ports of the 2 NW Aegean 11 Sea (Eastern 2 Mediterranean). Helgoland Marine Research 58, 54–61. (Abildgaard, in O.F. Muller, 1789) LED (Linnaeus, 1758) HS,FChintiroglou, 2 C., Damianidis, P., Antoniadou, C., Lantzouni, M., (Savignyi, 1816) HS 1 4 1 1 1 1

(Lesueur, 1823) HS Vafidis, D., 2004b. Macrofauna biodiversity of mussel bed continued

sp.assemblages HS in Thermaikos Gulf (northern Aegean Sea). Helgoland Marine Research 58, 62–70. Chintiroglou, C., Koukouras, A., 1992. A population of the sea anemone Anemonia viridis (Forskal 1775) and its associated flora Styela plicata HS, hard substrate; M, meadows; C, coralligenous; SS, soft substrate; PA, photophilic algae; Ma, maerl; F, fouling; G, caves; DC, detritic coastal bo Styela canopus large ecological distribution; U, unknown. Numbers refer to the numerical abundance; asterisk at colonial or sessile species, numerical abundance Tunicata Ciona intestinalis Didemnum Halocynthia papillosa Microcosmus sabatieri Echinocyamus pusillus Echinoidae juvenilesOphiothrix fragilis U 1 2 1 3 1 2 4 5 1 Taxa EC St.1 St.2 St.3 St.4 St.5 St.6 St.7 Appendix 1 ( depth level in bold. C. Antoniadou, C. Chintiroglou / Estuarine, Coastal and Shelf Science 62 (2005) 637–653 653

and fauna in the North Aegean Sea. International Revue Ges Koukouras, A., Ku¨hlmann, D., Voultsiadou, E., Vafidis, D., Dounas, Hydrobiology 77, 483–495. C., Chintiroglou, C., Koutsoubas, D., 1998. The macrofaunal Cocito, S., Bianchi, C.N., Morri, C., Peirano, A., 2000. First survey of assemblage associated with the scleractinia coral Cladocora sessile communities on subtidal rocks in an area with hydrothermal caespitosa (L.) in the Aegean Sea. Annales de l’Institut Oce´an- vents: Milos Island, Aegean Sea. Hydrobiologia 426, 113–121. ographique Paris 74, 97–114. Clarke, K.R., Green, R.H., 1988. Statistical design and analysis for Laborel, J., 1987. Marine biogenic constructions in the Mediterranean. a ‘biological effects’ study. Marine Ecology Progress Series 46, A review. Scientifique Report Port-Cros National Park 13, 13–126. 213–226. Leung Tack Kit, D., 1976. Etude de la faune marine de substrat Clarke, K.R., Warwick, R.M., 1994. Change in Marine Communities: rocheux dans la zone de rejet des eaux re´siduaire de la ville de An Approach to Statistical Analysis and Interpretation. Natural Marseille. Te´thys 7, 191–212. Environment Research Council, UK, 144 pp. Morri, C., Bianchi, C.N., Cocito, S., Peirano, A., DeBiasi, A.M., Costello, M.J., 1998. To know, research, manage and conserve marine Aliani, S., Pansini, M., Boyer, M., Ferdeghini, F., Pestarino, M., biodiversity. Oce´anis 24, 25–49. Dando, P., 1999. Biodiversity of marine sessile epifauna at an Dahl, L., Dahl, K., 2002. Temporal, spatial and substrate-dependent Aegean island subject to hydrothermal activity: Milos, Eastern variations of Danish hard-bottom macrofauna. Helgoland Marine Mediterranean Sea. Marine Biology 135, 729–739. Research 56, 159–168. Pe´re` s, J.M., 1982. Major benthic assemblages. In: Kinne, O. (Ed.), Damianidis, P., Chintiroglou, C., 2000. Structure and function of Marine Ecology. John Wiley, London, pp. 373–522. Polychaetofauna living in Mytilus galloprovincialis assemblages in Piazzi, L., Cinelli, F., 2000. Effets de l’expansion des Rhodophyce´e Thermaikos Gulf (N Aegean Sea). Oceanologica Acta 23, 323–337. introduites Acrothamnion preissi et Womersleyella setacea sur les Ergen, Z., Cinar, M.E., 1997. Polychaeta of the Antalya bay communaute´s algales des rhizomes de Posidonia oceanica de (Mediterranean coast of Turkey). Israel Journal of Zoology 43, Me´diterrane´e occidentale. Cryptogamie Algologie 21, 291–300. 229–241. Poulicek, M., 1985. Les mollusques des bioce´noses a algues photo- Fraschetti, S., Bianchi, C.N., Terlizzi, A., Fanelli, G., Morri, C., philes en Me´diterrane´e: II. – Analyse du peuplement. Cahiers de Boero, F., 2001. Spatial variability and human disturbance in Biologie Marine 26, 127–136. shallow subtidal hard substrate assemblages: a regional approach. Richards, G.W., 1983. Molluscan zonation on rocky shores in Malta. Marine Ecology Progress Series 212, 1–12. Journal of Conchology 31, 207–224. Fraschetti, S., Giangrande, A., Terlizzi, A., Miglietta, M.P., Della Sarda` , R., 1991. Polychaete communities related to plant covering in Tommasa, L., Boero, F., 2002. Spatio-temporal variation of the midlittoral and infralittoral zones of the Balearic Islands hydroids and polychaetes associated with Cystoseira amentacea (Western Mediterranean). P.S.Z.N.I.: Marine Ecology 12, 341–360. (Fucales: Phaeophyceae). Marine Biology 140, 949–957. Sartoretto, S., 1998. Bioerosion des concre´tions coralligenes de Gaston, K., Spicer, J.I., 1998. Biodiversity. An Introduction, Black- Me´diterrane´e par les organismes perforants: essai de quantification well, Oxford, 109 pp. des processus. C.R. Academie Science Paris 327, 839–844. Giangrande, A., 1988. Polychaete zonation and its relation to algal Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A., distribution down a vertical cliff in the Western Mediterranean Souvermezoglou, C., 1997. The Hellenic Seas: physics, chemistry, (Italy): a structural analysis. Journal of Experimental Marine biology and fisheries. Oceanography and Marine Biology Annual Biology and Ecology 120, 263–276. Revue 35, 415–538. Giangrande, A., Delos, A.L., Fraschetti, S., Musco, L., Licciano, M., Terlizzi, A., Fraschetti, S., Guidetti, P., Boero, F., 2002. The effects of Terlizzi, A., 2003. Polychaete assemblages along a rocky shore on sewage discharge on shallow hard substrate sessile assemblages. the South Adriatic coast (Mediterranean Sea): patterns of spatial Marine Pollution Bulletin 44, 544–550. distribution. Marine Biology 143, 1109–1116. Terlizzi, A., Scuderi, D., Fraschetti, S., Guidetti, P., Boero, F., 2003. Hong, J.S., 1982. Contribution a l’e´tude des peuplements d’un fond de Molluscs on subtidal cliffs: patterns of spatial distribution. Journal Concre´tionnent Corallige` ne dans la re´gion marseillaise en Me´di- of the Marine Biological Association of the UK 83, 165–172. terrane´e Nord-Occidental. Bulletin Korea Ocean Research and True, M.A., 1970. Etude quantitative de quatre peuplements sciaphiles Development Institute 4, 27–51. sur substrat rocheux dans la re´gion Marseillaise. Bulletin Institut Karalis, P., Antoniadou, C., Cintiroglou, C., 2003. Structure of the Oceanographique Monaco 69, 1–48. artificial hard substrate assemblages in ports in North Aegean Sea Zar, J.H., 1984. Biostatistical Analysis. Prentice Hall, New Jersey, (Thermaikos Gulf). Oceanologica Acta 26, 215–224. 718 pp.