Language Impairment with a Partial Duplication of DOCK8

Total Page:16

File Type:pdf, Size:1020Kb

Language Impairment with a Partial Duplication of DOCK8 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Language impairment with a partial duplication of DOCK8 2 Antonio Benítez-Burraco1, Maite Fernández-Urquiza2, Mª Salud Jiménez-Romero3 3 4 1. Department of Spanish, Linguistics, and Theory of Literature (Linguistics), 5 University of Seville, Seville, Spain 6 2. Department of Spanish Philology, University of Oviedo, Oviedo, Spain 7 3. Department of Education, University of Córdoba, Córdoba, Spain 8 9 Corresponding author: 10 Antonio Benítez-Burraco 11 Área de Lingüística General. Departamento de Lengua Española, Lingüística y Teoría 12 de la Literatura. Facultad de Filología. Universidad de Sevilla. C/ Palos de la Frontera 13 s/n. 41007-Sevilla (España) 14 e-mail: [email protected] 15 orcid.org/0000-0003-4574-5666 16 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 ABSTRACT 18 Copy-number variations of the distal region of the short arm of chromosome 9 are 19 associated with learning disabilities and behavioral disturbances. Deletions of the 9p 20 are more frequent than duplications. We report in detail on the cognitive and language 21 features of a child with a duplication in the 9p24.3 region (arr[hg19] 9p24.3(266,045- 22 459,076)x3). He exhibits marked expressive and receptive problems, which affect to 23 both structural aspects of language (notably, inflectional morphology, complex syntax, 24 and sentence semantics), and to functional aspects (pragmatics). These problems might 25 result from a severe underlying deficit in working memory. Regarding the molecular 26 causes of the observed symptoms, they might result from the altered expression of 27 selected genes involved in procedural learning, particularly, some of components of the 28 SLIT/ROBO/FOXP2 network, strongly related to the development and evolution of 29 language. Dysregulation of specific components of this network can result in turn from 30 an altered interaction between DOCK8, affected by the microduplication in 9p24.3 31 borne by our proband, and CDC42, acting as the hub component of the network 32 encompassing language-related genes. Still, some genes found strongly upregulated in 33 the subject and not related to these genes, particularly NRCAM, can contribute to the 34 observed problems in the language domain, as well as to specific features of the 35 proband, particularly, his impulsivity. 36 37 Keywords: 9p24.3 duplication; DOCK8; cognitive delay; language deficits; working 38 memory 39 40 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 41 INTRODUCTION 42 43 Copy number variants (CNVs) identified in subjects with language problems provide 44 important evidence of how changes in gene dosage affect the wiring and functioning of 45 brain areas involved in language processing, particularly, if they result in syndromic 46 features and encompass few genes. The terminal region of the short arm of chromosome 47 9 is prone to deletion, giving rise to a complex syndromic condition entailing mental 48 retardation, delayed psychomotor development, and speech delay (OMIM#158170). 49 Specifically, and according to the Unique database (https://www.rarechromo.org/), 50 deletions of the 9p24.3 region are associated with mild learning disabilities, that 51 commonly improve with appropriate early/supporting intervention, and with language 52 and speech delay, with a greater impact on the expressive domain. Although deletions 53 of the 9p are more frequent than duplications, an interstitial duplication at 9p24.3, 54 encompassing the genes DOCK8 and KANK1, has been recently associated with 55 multiple neurodevelopmental disorders, including schizophrenia (SZ), bipolar disease, 56 autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and 57 depression, all of them conditions entailing problems with language (Glessner et al., 58 2017). 59 60 In this paper, we report on a boy with a partial duplication of DOCK8 resulting from a 61 de novo microduplication in 9p24.3 and provide a detailed characterization of his 62 language (dis)abilities. A growing body of evidence points to an association of DOCK8 63 deletions, duplications, and translocations interrupting its functionality, with 64 intellectual disability and developmental delay (Griggs et al., 2008; Krgovic et al., 65 2018). According to DECIPHER (https://decipher.sanger.ac.uk/), nearly 60% of the 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 66 143 CNVs involving DOCK8 are losses and about 40% are gains. DOCK8 losses are 67 associated with intellectual disability, global developmental delay, abnormal facial 68 features, and microcephaly, whereas DOCK8 gains are mostly associated with 69 intellectual disability, global developmental delay, ASD, clinodactyly, and delayed 70 speech and language development. However, these CNVs usually involve other genes 71 besides DOCK8 and/or are found in patients with other chromosomal abnormalities. 72 Accordingly, we expect that smaller CNVs affecting to DOCK8 only, like the one found 73 in our patient, help to achieve more robust genotype-to-phenotype correlations. 74 75 DOCK8 plays an important role in modulating the immune response and mutations in 76 the gene are known to cause immunodeficiency disease (Biggs et al., 2017; Broides et 77 al., 2017; Kearney et al., 2017). Because the gene is also expressed in the fetal and adult 78 brains (Griggs et al., 2008), it is expected to play a key role as well in brain development 79 and function. Accordingly, in mice the Dock8 protein contributes to Schwann cell 80 precursor migration during embryonic development of the peripheral nervous system 81 (Miyamoto et al., 2016). DOCK8 is upregulated in neuronally differentiated cells after 82 the over-expression of MECP2_e1, which is the etiologically relevant variant of the 83 MECP2 protein for Rett syndrome (Orlic-Milacic et al., 2014). DOCK8 is a candidate 84 for ASD too. Two de novo loss-of-function variants of DOCK8 have been found in 85 probands from the Autism Sequencing Consortium and the Autism Clinical and Genetic 86 Resources in China (ACGC) cohort (De Rubeis et al., 2014; Wang et al., 2016). The 87 9p24.3 region overlaps with linkage regions found in large ASD extended pedigrees 88 (Allen-Brady et al., 2009; Coon et al., 2010). Nonetheless, little is known about the 89 causes of the neuropsychiatric features and neurodevelopmental anomalies associated 90 to mutations of DOCK8 or to CNVs encompassing the gene. This is particularly true of 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 91 the language deficits that are commonly observed in patients, among other reasons, 92 because we still lack a detailed account of the language problems caused by DOCK8 93 mutations or dosage alterations. In this paper, we build on our current knowledge of the 94 genetic aspects of language development and language evolution, as well as on the 95 expression pattern of selected genes in the blood of our proband, for advancing a 96 hypothesis of the molecular causes of language dysfunction associated to DOCK8 97 alterations. 98 99 MATERIAL AND METHODS 100 101 Linguistic, cognitive, and behavioral assessment 102 The global developmental profile of the proband was defined with the Spanish versions 103 of the Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V) (Hernández et 104 al., 2015) and the Inventory for Client and Agency Planning (ICAP) (Montero, 1996). 105 106 Wechsler Intelligence Scale for Children (WISC-V) 107 The WISC-V was used for testing multiple cognitive abilities of the child. It consists of 108 10 primary subtests and 5 secondary subtests, which are combined to generate different 109 composite score indices. The five primary composite score indices are: Verbal 110 Comprehension (VCI), Visual Spatial Index (VSI), Fluid Reasoning Index (FRI), 111 Working Memory Index (WMI), and Processing Speed Index (PSI). The VCI measures 112 verbal reasoning, understanding, concept formation, and crystallized intelligence. The 113 VSI measures nonverbal reasoning and concept formation, visual perception and 114 organization, visual-motor coordination, and the child’s ability to analyze and 115 synthesize abstract information, and to distinguish figure-ground in visual stimuli. The 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.155523; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 116 FRI evaluates quantitative reasoning, classification and spatial abilities, knowledge of 117 part to whole relationships, as well as fluid reasoning abilities. The WMI assesses the 118 child’s ability to sustain auditory attention, concentrate, and exert mental control. 119 Lastly, the PSI determines the speed and accuracy of the child when processing 120 information. 121 122 The Inventory for Client and Agency Planning (ICAP) 123 The ICAP was used for evaluating the subject’s functional abilities and maladaptive 124 behaviors in the following general areas: motor skills, social and communication skills, 125 personal living skills, and community living skills.
Recommended publications
  • Identifying MMP14 and COL12A1 As a Potential Combination of Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma Using Integrated Bioinformatics Analysis
    Identifying MMP14 and COL12A1 as a potential combination of prognostic biomarkers in pancreatic ductal adenocarcinoma using integrated bioinformatics analysis Jingyi Ding1, Yanxi Liu2 and Yu Lai3 1 Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China 2 University of California, Los Angeles, Los Angeles, CA, United States of America 3 School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China ABSTRACT Background. Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant neo- plasm. It is necessary to improve the understanding of the underlying molecular mechanisms and identify the key genes and signaling pathways involved in PDAC. Methods. The microarray datasets GSE28735, GSE62165, and GSE91035 were down- loaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified by integrated bioinformatics analysis, including protein–protein interaction (PPI) network, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The PPI network was established using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. GO functional annotation and KEGG pathway analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. Hub genes were validated via the Gene Expression Profiling Interactive Analysis tool (GEPIA) and the Human Protein Atlas (HPA) website. Results. A total of 263 DEGs (167 upregulated and 96 downregulated) were common to the three datasets. We used STRING and Cytoscape software to establish the PPI Submitted 25 August 2020 network and then identified key modules. From the PPI network, 225 nodes and 803 Accepted 2 November 2020 edges were selected. The most significant module, which comprised 11 DEGs, was Published 23 November 2020 identified using the Molecular Complex Detection plugin.
    [Show full text]
  • CHL1 and Nrcam Are Primarily Expressed in Low Grade Pediatric
    Open Med. 2019; 14: 920-927 Research Article Robin Wachowiak, Steffi Mayer, Anne Suttkus, Illya Martynov, Martin Lacher, Nathaniel Melling, Jakob R. Izbicki, Michael Tachezy CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma https://doi.org/10.1515/med-2019-0109 Keywords: CHL1; NrCAM; Neuroblastoma; Immunohisto- received November 7, 2018; accepted October 19, 2019 chemistry; Tumor markers; Neuropathology Abstract: Background. Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an impor- tant role in development and regeneration of the central 1 Introduction nervous system. However, they are also associated with Neuroblastoma is an embryonic malignancy deriving cancerogenesis and progression in adult malignancies, from neural crest cells that undergo rapid differentia- thus gain increasing importance in cancer research. We tion during fetal development. As the transition from therefore studied the expression of CHL1 and NrCAM normal to malignant tissue can occur in multiple steps, according to the course of disease in children with neu- its phenotype is highly heterogeneous [1]. Although pro- roblastoma. gress has been made in the treatment of neuroblastoma, Methods. CHL1 and NrCAM expression levels were histo- the outcome of children at high risk remains poor with a logically assessed by tissue microarrays from surgically long-term survival as low as 50 % [2]. Different parameters resected neuroblastoma specimens of 56 children. Expres- such as age, stage and chromosomal aberrations have an sion of both markers was correlated to demographics as impact on prognosis. Still, there is an ongoing need for well as clinical data including metastatic dissemination tumor markers, which allow a better determination of the and survival.
    [Show full text]
  • Manual Annotation and Analysis of the Defensin Gene Cluster in the C57BL
    BMC Genomics BioMed Central Research article Open Access Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome Clara Amid*†1, Linda M Rehaume*†2, Kelly L Brown2,3, James GR Gilbert1, Gordon Dougan1, Robert EW Hancock2 and Jennifer L Harrow1 Address: 1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK, 2University of British Columbia, Centre for Microbial Disease & Immunity Research, 2259 Lower Mall, Vancouver, BC, V6T 1Z4, Canada and 3Department of Rheumatology and Inflammation Research, Göteborg University, Guldhedsgatan 10, S-413 46 Göteborg, Sweden Email: Clara Amid* - [email protected]; Linda M Rehaume* - [email protected]; Kelly L Brown - [email protected]; James GR Gilbert - [email protected]; Gordon Dougan - [email protected]; Robert EW Hancock - [email protected]; Jennifer L Harrow - [email protected] * Corresponding authors †Equal contributors Published: 15 December 2009 Received: 15 May 2009 Accepted: 15 December 2009 BMC Genomics 2009, 10:606 doi:10.1186/1471-2164-10-606 This article is available from: http://www.biomedcentral.com/1471-2164/10/606 © 2009 Amid et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Host defense peptides are a critical component of the innate immune system. Human alpha- and beta-defensin genes are subject to copy number variation (CNV) and historically the organization of mouse alpha-defensin genes has been poorly defined.
    [Show full text]
  • Broad and Thematic Remodeling of the Surface Glycoproteome on Isogenic
    bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Broad and thematic remodeling of the surface glycoproteome on isogenic cells transformed with driving proliferative oncogenes Kevin K. Leung1,5, Gary M. Wilson2,5, Lisa L. Kirkemo1, Nicholas M. Riley2,4, Joshua J. Coon2,3, James A. Wells1* 1Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA Departments of Chemistry2 and Biomolecular Chemistry3, University of Wisconsin- Madison, Madison, WI, 53706, USA 4Present address Department of Chemistry, Stanford University, Stanford, CA, 94305, USA 5These authors contributed equally *To whom correspondence should be addressed bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here We apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT.
    [Show full text]
  • Identification of Potential Biomarkers and Drugs for Papillary Thyroid Cancer Based on Gene Expression Profile Analysis
    MOLECULAR MEDICINE REPORTS 14: 5041-5048, 2016 Identification of potential biomarkers and drugs for papillary thyroid cancer based on gene expression profile analysis TING QU1*, YAN-PING LI2*, XIAO-HONG LI1 and YAN CHEN1 Departments of 1Pharmacy and 2Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China Received September 17, 2015; Accepted September 29, 2016 DOI: 10.3892/mmr.2016.5855 Abstract. The present study aimed to systematically examine sition and responding to steroid hormone stimuli, respectively. the molecular mechanisms of papillary thyroid cancer (PTC), Ocriplasmin, β-mercaptoethanol and recombinant α 1-anti- and identify potential biomarkers and drugs for the treatment trypsin may be potential drugs for the treatment of PTC. of PTC. Two microarray data sets (GSE3467 and GSE3678), containing 16 PTC samples and 16 paired normal samples, Introduction were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were Thyroid cancer is one of the most common types of endocrine identified using the Linear Models for Microarray Analysis malignancy, the incidence rate of which has rapidly increased package. Subsequently, the common DEGs were screened for during previous years (1,2). It has been estimated that the functional and pathway enrichment analysis using the Database annual number of cases of thyroid cancer diagnosed in the for Annotation Visualization and Integrated Discovery. The USA and the associated mortality rate are 12.9/100,000
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Defensin Beta 5 Human Protein – AR31146PU-N | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AR31146PU-N Defensin beta 5 Human Protein Product data: Product Type: Recombinant Proteins Description: Defensin beta 5 human recombinant protein, 20 µg Species: Human Expression Host: E. coli Predicted MW: 5.8 kDa Purity: >98% by SDS-PAGE gel and HPLC analyses Buffer: Presentation State: Purified State: Lyophilized (sterile filtered) protein Buffer System: None Preservative: None Stabilizer: None Endotoxin: < 0.1 ng per μg (1EU/μg) Reconstitution Method: Restore in Water to a concentration of 0.1-1.0 mg/ml. Do not vortex. For extended storage, it is recommended to further dilute in a buffer containing a carrier protein (example 0.1% BSA) and store in working aliquots at -20°C to - 80°C. Preparation: Lyophilized (sterile filtered) protein Protein Description: Recombinant Human BD-5 is a 5.8 kDa protein containing 51 amino acid residues. Note: Centrifuge vial before opening. Storage: Store lyophilized at 2-8°C for 6 months or at -20°C long term. After reconstitution store the antibody undiluted at 2-8°C for one month or (in aliquots) at -20°C long term. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. RefSeq: NP_689463 Locus ID: 245908 UniProt ID: Q8NG35, A0A0K0K1I4 Cytogenetics: 8p23.1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Defensin beta 5 Human Protein – AR31146PU-N Synonyms: BD-5; DEFB-5; DEFB105 Summary: Defensins form a family of antimicrobial and cytotoxic peptides made by neutrophils.
    [Show full text]
  • Human Brain Organoids Reveal Accelerated Development of Cortical Neuron Classes As a Shared Feature of Autism Risk Genes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376509; this version posted November 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Human brain organoids reveal accelerated development of cortical neuron classes as a shared feature of autism risk genes Bruna Paulsen1,2,†, Silvia Velasco1,2,†,#, Amanda J. Kedaigle1,2,3,†, Martina Pigoni1,2,†, Giorgia Quadrato4,5 Anthony Deo2,6,7,8, Xian Adiconis2,3, Ana Uzquiano1,2, Kwanho Kim1,2,3, Sean K. Simmons2,3, Kalliopi Tsafou2, Alex Albanese9, Rafaela Sartore1,2, Catherine Abbate1,2, Ashley Tucewicz1,2, Samantha Smith1,2, Kwanghun Chung9,10,11,12, Kasper Lage2,13, Aviv Regev3,14, Joshua Z. Levin2,3, Paola Arlotta1,2,# † These authors contributed equally to the work # Correspondence should be addressed to [email protected] and [email protected] 1 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 3 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 4 Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; 5 Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at the University of Southern California, Los Angeles, CA 90033, USA. 6 Department of Psychiatry,
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Identification of Common Gene Networks Responsive To
    Cancer Gene Therapy (2014) 21, 542–548 © 2014 Nature America, Inc. All rights reserved 0929-1903/14 www.nature.com/cgt ORIGINAL ARTICLE Identification of common gene networks responsive to radiotherapy in human cancer cells D-L Hou1, L Chen2, B Liu1, L-N Song1 and T Fang1 Identification of the genes that are differentially expressed between radiosensitive and radioresistant cancers by global gene analysis may help to elucidate the mechanisms underlying tumor radioresistance and improve the efficacy of radiotherapy. An integrated analysis was conducted using publicly available GEO datasets to detect differentially expressed genes (DEGs) between cancer cells exhibiting radioresistance and cancer cells exhibiting radiosensitivity. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein–protein interaction (PPI) networks analysis were also performed. Five GEO datasets including 16 samples of radiosensitive cancers and radioresistant cancers were obtained. A total of 688 DEGs across these studies were identified, of which 374 were upregulated and 314 were downregulated in radioresistant cancer cell. The most significantly enriched GO terms were regulation of transcription, DNA-dependent (GO: 0006355, P = 7.00E-09) for biological processes, while those for molecular functions was protein binding (GO: 0005515, P = 1.01E-28), and those for cellular component was cytoplasm (GO: 0005737, P = 2.81E-26). The most significantly enriched pathway in our KEGG analysis was Pathways in cancer (P = 4.20E-07). PPI network analysis showed that IFIH1 (Degree = 33) was selected as the most significant hub protein. This integrated analysis may help to predict responses to radiotherapy and may also provide insights into the development of individualized therapies and novel therapeutic targets.
    [Show full text]