Mutation Rate Switch Inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe
Mutation Rate Switch inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe Denis Pierron1, Ivan Chang4, Amal Arachiche1, Margit Heiske1, Olivier Thomas1, Marine Borlin1, Erwan Pennarun5, Pacal Murail3, Didier Thoraval2, Christophe Rocher1, Thierry Letellier1* 1 Laboratoire de Physiopathologie Mitochondriale U688, INSERM - Universite´ Victor Segalen-Bordeaux 2, Bordeaux, France, 2 Institut de Biochimie et Ge´ne´tique Cellulaires UMR 5095, CNRS - Universite´ Victor Segalen-Bordeaux 2, Bordeaux, France, 3 Laboratoire d’Anthropologie des Populations du Passe´ PACEA UMR 5199, CNRS - Universite´ Bordeaux 1, Talence, France, 4 Institute of Genomic Biology, University of California Irvine, Irvine, California, United States of America, 5 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, Tartu, Estonia Abstract R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration ‘‘out of Africa’’ and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non- synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force.
[Show full text]