Shortnose Sturgeon (Acipenser Brevirostrum) and Atlantic Sturgeon (A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Diversity of Fish (Pisces) in Freshwater
Hydrobiologia (2008) 595:545–567 DOI 10.1007/s10750-007-9034-0 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of fish (Pisces) in freshwater C. Le´veˆque Æ T. Oberdorff Æ D. Paugy Æ M. L. J. Stiassny Æ P. A. Tedesco Ó Springer Science+Business Media B.V. 2007 Abstract The precise number of extant fish spe- species live in lakes and rivers that cover only 1% cies remains to be determined. About 28,900 species of the earth’s surface, while the remaining 16,000 were listed in FishBase in 2005, but some experts species live in salt water covering a full 70%. While feel that the final total may be considerably higher. freshwater species belong to some 170 families (or Freshwater fishes comprise until now almost 13,000 207 if peripheral species are also considered), the species (and 2,513 genera) (including only fresh- bulk of species occur in a relatively few groups: water and strictly peripheral species), or about the Characiformes, Cypriniformes, Siluriformes, 15,000 if all species occurring from fresh to and Gymnotiformes, the Perciformes (noteably the brackishwaters are included. Noteworthy is the fact family Cichlidae), and the Cyprinodontiformes. that the estimated 13,000 strictly freshwater fish Biogeographically the distribution of strictly fresh- water species and genera are, respectively 4,035 species (705 genera) in the Neotropical region, 2,938 (390 genera) in the Afrotropical, 2,345 (440 Guest editors: E. V. Balian, C. Le´veˆque, H. Segers & K. Martens genera) in the Oriental, 1,844 (380 genera) in the Freshwater Animal Diversity Assessment Palaearctic, 1,411 (298 genera) in the Nearctic, and 261 (94 genera) in the Australian. -
B. Quantitative Characters Morphometric & Meristics Laboratory
Lab. No. 2 B. Quantitative Characters Morphometric & Meristics laboratory Taxonomic Characters The first step in successfully working with fishes is correct identification. Similar species require in depth examination to discern the few differentiating characteristics. Many times these examinations require accurate measurements and counts of fin ray elements. Objectives: The purpose of this lab is to introduce students to these characters. Quantitative Characters Quantitative characters are usually expressed as numbers, these include a measurable and countable characters. Morphometrics are measurable characters or length-based measures of specific body parts, such as total length of the body or diameter of the eye. These characters are usually measured in the millimeter scale. Meristics are counts of things which occur more than once, but a variable number of times between species (and sometimes within species). These include counts of fin elements, i.e.: the number of dorsal fin spines and rays. NOTICE Spines are hard, pinlike projections, while rays are soft and brush-like Occasionally, fins will be a mix of both spines and rays; however, spines are ALWAYS the most forward structures (closest to the head) on the fin. The table below helps you to differentiate between a spine and a ray Spines Rays Hard and pointed Segmented Unsegmented Sometimes branched Unbranched Bilateral with left and right halves Solid Because they are already dimensionless, meristic measurements can be compared directly. 8 Lab. No. 2 Laboratory exercise In this exercise we will be making various measurements and counts on several species of fish. Record the appropriate information in the attached table. Procedure—Morphology • Each group is equipped with: • Dissecting microscope • Needle probe • Dissecting tray • Scissors • Petri dish • Scalpel • Calipers • Slides and coverslips • Forceps (fine tip and blunt tip) • Latex gloves (optional) Each team should get a fish. -
First Verified Occurrence of the Shortnose Sturgeon (Acipenser Brevirostrum) in the James River, Virginia
19 6 Abstract—The shortnose sturgeon (Acipenser brevirostrum) is an en- First verified occurrence of the shortnose dangered species of fish that inhab- sturgeon (Acipenser brevirostrum) its the continental slope of the At- lantic Ocean from New Brunswick, in the James River, Virginia Canada, to Florida. This species has not been documented previously in the freshwater portion of any river Matthew Balazik of the Chesapeake Bay, except in the Potomac River. On 13 March 2016, a Email address for author: [email protected] shortnose sturgeon was captured in the freshwater portion of the James Center for Environmental Studies River at river kilometer 48. The Virginia Commonwealth University fish had a fork length of about 75 1000 West Cary Street cm and was likely mature. Genetic Richmond, Virginia 23284 analysis confirmed the fish was a shortnose sturgeon and was assigned to the Chesapeake Bay–Delaware population segment. Regardless of whether this shortnose sturgeon was part of a remnant Chesapeake The shortnose sturgeon (Acipenser ture of shortnose sturgeon, as well Bay population or whether its cap- brevirostrum) is an amphidromous (Spells1; Welsh et al., 2002; Mangold ture there is an indicator of an ex- sturgeon reported to inhabit the con- et al.2). Only one genetically verified pansion of range from the Delaware tinental slope of the Atlantic Ocean shortnose sturgeon was collected in River by way of the Chesapeake and from New Brunswick, Canada, to Virginia waters as part of these pro- Delaware Canal, dedicated research Florida (Gruchy and Parker, 1980; grams (Spells1; Welsh et al., 2002). is needed to determine the status of Dadswell et al., 1984; Kynard, 1997). -
Flood Frequency Analyses for New Brunswick Rivers Canadian Technical Report of Fisheries and Aquatic Sciences 2920
Flood Frequency Analyses for New Brunswick Rivers Aucoin, F., D. Caissie, N. El-Jabi and N. Turkkan Department of Fisheries and Oceans Gulf Region Oceans and Science Branch Diadromous Fish Section P.O. Box 5030, Moncton, NB, E1C 9B6 2011 Canadian Technical Report of Fisheries and Aquatic Sciences 2920 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. -
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
The Genetic Basis of Morphometric and Meristic Traits in Rainbow Trout (Oncorhynchus Mykiss)
Central Annals of Aquaculture and Research Research Article *Corresponding author Domitilla Pulcini, Department of Biology, “Tor Vergata” University of Rome, Consiglio per la Ricerca in The Genetic Basis of Agricoltura e l’Analisi dell’Economia Agraria, Via Salaria 31, 00016, Monterotondo (Rome), Italy, Tel: 39-06- 90090263; Email: Morphometric and Meristic Submitted: 30 September 2016 Accepted: 18 October 2016 Traits in Rainbow Trout Published: 21 October 2016 ISSN: 2379-0881 (Oncorhynchus mykiss) Copyright © 2016 Pulcini et al. Domitilla Pulcini1,2*, Kristofer Christensen3, Paul A. Wheeler3, OPEN ACCESS Tommaso Russo2, and Gary H. Thorgaard3 1,2Department of Biology, “Tor Vergata” University of Rome, Italy Keywords 3School of Biological Sciences and Center for Reproductive Biology, Washington State • Domestication University, USA • Geometric morphometrics • QTL • Meristics Abstract • Salmonids In fishes, body shape, is a complex trait involving several genetic and environmental • Shape factors. Understanding the genetic basis of phenotypic variation in body form could lead to breeding strategies aimed at adapting body shape to captive environments. In the present study, QTLs associated with morphometric and meristic traits in rainbow trout were identified using a genetic linkage map created from a cross of two clonal lines divergent for morphology and life history (wild steelhead trout and domesticated rainbow trout). Genome regions associated with differences in morphological (body depth, mouth orientation, caudal peduncle shape, anal and dorsal fin length) and meristic (number of skeletal elements of median and paired fins and of caudal fin) characters were identified. The identification of genomic locations influencing body morphology, even if only at a gross level, could be of pivotal importance to direct breeding strategies in commercial hatcheries towards the production of more desirable body types. -
Variation of the Spotted Sunfish, Lepomis Punctatus Complex
Variation of the Spotted Sunfish, Lepomis punctatus Complex (Centrarehidae): Meristies, Morphometries, Pigmentation and Species Limits BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY The scientific publication of the Alabama Museum of Natural History. Richard L. Mayden, Editor, John C. Hall, Managing Editor. BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY is published by the Alabama Museum of Natural History, a unit of The University of Alabama. The BULLETIN succeeds its predecessor, the MUSEUM PAPERS, which was terminated in 1961 upon the transfer of the Museum to the University from its parent organization, the Geological Survey of Alabama. The BULLETIN is devoted primarily to scholarship and research concerning the natural history of Alabama and the midsouth. It appears irregularly in consecutively numbered issues. Communication concerning manuscripts, style, and editorial policy should be addressed to: Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, The University of Alabama, Box 870340, Tuscaloosa, AL 35487-0340; Telephone (205) 348-7550. Prospective authors should examine the Notice to Authors inside the back cover. Orders and requests for general information should be addressed to Managing Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, at the above address. Numbers may be purchased individually; standing orders are accepted. Remittances should accompany orders for individual numbers and be payable to The University of Alabama. The BULLETIN will invoice standing orders. Library exchanges may be handled through: Exchange Librarian, The University of Alabama, Box 870266, Tuscaloosa, AL 35487-0340. When citing this publication, authors are requested to use the following abbreviation: Bull. Alabama Mus. Nat. Hist. ISSN: 0196-1039 Copyright 1991 by The Alabama Museum of Natural History Price this number: $6.00 })Il{ -w-~ '{(iI1 .....~" _--. -
Morphometric and Meristic Variation in Two
Simon et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2010 11(11):871-879 871 Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: [email protected] Morphometric and meristic variation in two congeneric archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix * (Pallas 1767) inhabiting Malaysian coastal waters K. D. SIMON†1, Y. BAKAR2, S. E. TEMPLE3, A. G. MAZLAN†‡4 (1Marine Science Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (2Biology Programme, School of Biological Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (3School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia) (4Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) †E-mail: [email protected]; [email protected] Received Feb. 18, 2010; Revision accepted Aug. 3, 2010; Crosschecked Oct. 8, 2010 Abstract: A simple yet useful criterion based on external markings and/or number of dorsal spines is currently used to differentiate two congeneric archer fish species Toxotes chatareus and Toxotes jaculatrix. Here we investigate other morphometric and meristic characters that can also be used to differentiate these two species. Principal component and/or discriminant functions revealed that meristic characters were highly correlated with pectoral fin ray count, number of lateral line scales, as well as number of anal fin rays. The results indicate that T. chatareus can be distin- guished from T. -
Leo Semenovich Berg and the Biology of Acipenseriformes: a Dedication
Environmental Biology of Fishes 48: 15–22, 1997. 1997 Kluwer Academic Publishers. Printed in the Netherlands. Leo Semenovich Berg and the biology of Acipenseriformes: a dedication Vadim J. Birstein1 & William E. Bemis2 1 The Sturgeon Society, 331 West 57th Street, Suite 159, New York, NY 10019, U.S.A. 2 Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, U.S.A. Received 5.3.1996 Accepted 23.5.1996 Key words: T. Dobzhansky, A. Sewertzoff, T. Lysenko, Paleonisciformes, biogeography This volume is dedicated to the memory of Leo Semenovich Berg (1876–1950), a Russian ichthyologist and geographer. In the foreword to the English translation of Berg’s remarkable treatise, ‘Nomogenesis or evolu- tion according to law’, Theodosius Dobzhansky wrote: ‘Berg was one of the outstanding intellects among Russian scientists. The breadth of his interests and the depth as well as the amplitude of his scholarship were remarkable. He had the reputation of being a ‘walking library’, because of the amount of information he could produce from his memory’ (Dobzhansky 1969, p. xi). Berg was prolific, publishing 217 papers and monographs on ichthyology, 30 papers on general zoology and biology, 20 papers on paleontology, 32 papers on zoogeo- graphy, 320 papers and monographs on geography, geology, and ethnography, as well as 290 biographies, obituaries, and popular articles (Berg 1955, Sokolov 1955). Berg was born 120 years ago, on 14 March 1876, in Sciences. Berg was never formally recognized by the town of Bendery. According to laws of the Rus- the Soviet Academy for his accomplishments in sian Empire, Berg could not enter the university as biology, and only later (1946) was he elected a mem- a Jew, so he was baptized and became a Lutheran, ber of the Geography Branch of the Soviet Acade- which allowed him to study and receive his diploma my of Sciences (Figure 1). -
Sturgeon Classification – Dichotomous Keys Subject
Topic/Lesson: Sturgeon Classification – Dichotomous Keys Subject: Classification and dichotomous keys Author: Rob Yeomans Time One 90 minute block or two 45 minute periods Duration: Overview: Students will use pictures of 7 members of the order Acipenseriformes to build a dichotomous key to identify each species. Objectives: Students will be able to: • Describe how to construct a dichotomous key. • Explain the hierarchal grouping of taxonomy. • Define a species. • Use their observational skills to differentiate species of sturgeon. • Understand the human impact on many species of sturgeon. Materials: • Whiteboard • Projector and screen • Dichotomous key assignment Procedures: 1) At the start of class, put the KPCOFGS of Atlantic sturgeon on the board, out of order. Have the class put each category in order from biggest to smallest and then define each term (What does it mean to be in kingdom Animalia? Phylum Chordata?) If the students don’t know, tell them—especially when you get down to order, family and genus. • Kingdom Animalia (multicellular, heterotrophic, eukaryotic) • Phylum Chordata (have at some point a notochord, dorsal nerve cord, gill slits and a post-anal tail) • Class Actinopterygii (All ray finned fishes. Fins are made of bony spines connected by a webbing of skin for support) • Order Acipenseriformes (primitive, cartilaginous endoskeleton, lack of a vertebral column) • Family Acipenseridae (true sturgeon; elongated bodies, lack of scales, anadromous, bottom feeders) • Genus Acipenser (Atlantic Sturgeon) 1 • Species oxyrinchus Comment to the class that there are actually two subspecies of oxyrinchus. Acipenser oxyrinchus oxyrinchus is the Atlantic sturgeon and Acipenser oxyrinchus desotoi is the Gulf sturgeon 2) Reinforce the fact that sturgeon are a primitive fish and fossils have been found dating back 144-65 million years ago. -
California Fish and Game “Conservation of Wildlife Through Education”
Summer 2015 159 CALIFORNIA FISH AND GAME “Conservation of Wildlife Through Education” Volume 101 Summer 2015 Number 3 Published Quarterly by the California Department of Fish and Wildlife 160 CALIFORNIA FISH AND GAME Vol. 101, No. 3 STATE OF CALIFORNIA Jerry Brown, Governor CALIFORNIA NATURAL RESOURCES AGENCY John Laird, Secretary for Natural Resources FISH AND GAME COMMISSION Jack Baylis, President Jim Kellogg, Vice President Jacque Hostler-Carmesin, Member Anthony C. Williams, Member Eric Sklar, Member Sonke Mastrup, Executive Director DEPARTMENT OF FISH AND WILDLIFE Charlton “Chuck” Bonham, Director CALIFORNIA FISH AND GAME EDITORIAL STAFF Vern Bleich ........................................................................................Editor-in-Chief Carol Singleton ........................ Office of Communication, Education and Outreach Jeff Villepique, Steve Parmenter ........................................... Inland Deserts Region Scott Osborn, Laura Patterson, Joel Trumbo ................................... Wildlife Branch Dave Lentz, Kevin Shaffer ............................................................. Fisheries Branch Peter Kalvass, Nina Kogut .................................................................Marine Region James Harrington .......................................Office of Spill Prevention and Response Cherilyn Burton ...................................................................... Native Plant Program Summer 2015 161 VOLUME 101 SUMMER 2015 NUMBER 3 Published Quarterly by STATE OF CALIFORNIA CALIFORNIA -
The Key Threats to Sturgeons and Measures for Their Protection in the Lower Danube Region
THE KEY THREATS TO STURGEONS AND MEASURES FOR THEIR PROTECTION IN THE LOWER DANUBE REGION MIRJANA LENHARDT* Institute for Biological Research, Serbia IVAN JARIĆ, GORČIN CVIJANOVIĆ AND MARIJA SMEDEREVAC-LALIĆ Center for Multidisciplinary Studies, Serbia Abstract The six native sturgeon species have been commercially harvested in the Danube Basin for more than 2,000 years, with rapid decrease in catch by mid 19th century. Addi- tional negative effect on sturgeon populations in the Danube River was river regulation in Djerdap region, due to navigation in the late 19th century, as well as dam construction in the second half of 20th century that blocked sturgeon spawning migrations. Beside over- fishing and habitat loss, illegal trade, life history characteristics of sturgeon, lack of effective management (due to lack of transboundary cooperation and change in political situa- tion in Lower Danube Region countries) and pollution all pose serious threats on sturgeon populations in Lower Danube Region. International measures established by the Conven- tion on International Trade in Endangered Species (CITES) in late 20th century, listing of beluga (Huso huso) as an endangered species under the U.S. Endangered Species Act, as well as development of Action plan for conservation of sturgeons in the Danube River Basin, had significant impact on activities related to sturgeon protection at beginning of 21st century. These actions were aimed towards diminishment of pressure on natural sturgeon populations and aquaculture development in countries of Lower Danube Region. The main goal of the Action Plan was to raise public awareness and to create a common framework for implementation of urgent measures.