Logic / Thinking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE ART of Puzzle Game Design
THE ART OF Puzzle Design Scott Kim & Alexey Pajitnov with Bob Bates, Gary Rosenzweig, Michael Wyman March 8, 2000 Game Developers Conference These are presentation slides from an all-day tutorial given at the 2000 Game Developers Conference in San Jose, California (www.gdconf.com). After the conference, the slides will be available at www.scottkim.com. Puzzles Part of many games. Adventure, education, action, web But how do you create them? Puzzles are an important part of many computer games. Cartridge-based action puzzle gamse, CD-ROM puzzle anthologies, adventure game, and educational game all need good puzzles. Good News / Bad News Mental challenge Marketable? Nonviolent Dramatic? Easy to program Hard to invent? Growing market Small market? The good news is that puzzles appeal widely to both males and females of all ages. Although the market is small, it is rapidly expanding, as computers become a mass market commodity and the internet shifts computer games toward familiar, quick, easy-to-learn games. Outline MORNING AFTERNOON What is a puzzle? Guest Speakers Examples Exercise Case studies Question & Design process Answer We’ll start by discussing genres of puzzle games. We’ll study some classic puzzle games, and current projects. We’ll cover the eight steps of the puzzle design process. We’ll hear from guest speakers. Finally we’ll do hands-on projects, with time for question and answer. What is a Puzzle? Five ways of defining puzzle games First, let’s map out the basic genres of puzzle games. Scott Kim 1. Definition of “Puzzle” A puzzle is fun and has a right answer. -
Games Brochure
the learning store.ie ACTIVITY LEARNING ALSO SHOP ONLINE AT www.thelearningstore.ie Activity Learning CONTENTS Early Years Construction 3 Wet Day Fun 10-14 Jigsaw Puzzles 15-18 Wooden Puzzles 19 Science & Environmental Awareness 20 Fine Motor Skills 21-24 Gross Motor Skills 25-28 Early Years Colours 29 Early Years Shapes 30 Sort, Count & Sequence 31 Shapes & Patterns 32-27 Early Numeracy 38-41 Base 10 & Place Value 42-44 Euro Money 45 Dice 46-47 Area & Weight 48-51 Fractions & Equivalence 52-54 Fun Maths Games 55-59 Time 60-62 Sand & Digital Timers 63 Sentence & Word Building 64-65 Handwriting Helpers 66 Language & Social Skills 67-70 Science & Environmental Awareness 71-77 Sensory 78-87 Behaviour Helpers 88-91 Music & Sound 92 Aistear 93-97 Rúdaí as Gaeilge 98-99 B-2 Contact [email protected] if you need help with anything EARLY YEARS CONSTRUCTION M M 36+ 24+ 1 Wooden Octoplay 30-2000 Create a dog, man, tower or many other models with this 20 piece set. Pieces measure 12 x 12cm and are 6mm thick. Made from high quality plywood. Colour instruction guide is included. €39.95 2 Jumbo Blocks 95178 Large selection of dierent solid wooden blocks in traditional M patterns. Pieces are made from eco-friendly and hard wearing rubberwood. 24+ €99.95 3 Wooden Blocks Set (100 pieces) 4 Heuristic Play Starter Pack 76003 Develop ne motor skills with this classic wooden block set. 100 pieces 73935 The resources in this set provide valuable opportunities for of dierent shapes and sizes with a mixture of natural wood and brightly extending children’s learning. -
Knotted Doughnuts and Other Mathematical Entertainments
MARTIN GARDNER KNOTTED DOUGHNUTS KNOTTED DOUGHNUTS AND OTHER MATHEMATICAL ENTERTAINMENTS MARTIN GARDNER KNOTTED DOUGHNUTS AND OTHER MATHEMATICAL ENTERTAINMENTS W. H. Freeman and Company New York Library of Congress Cataloging-in-Publication Data Gardner. Martin, 1914 - Knotted doughnuts and other mathematical entertainments Includes bibliographies and index. 1. Mathematical recreations. I. Title. QA95.GZ7 1986 793.7'4 85-31134 ISBN 0-7 167-1794-8 ISBN 0-7 167-1799-9 (pbk.) Copyright O 1986 by W. H. Freeman and Company No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the publisher. Printed in the United States of America To Gerry Pie1 and Dennis Flanagan and all my other good friends at Scientific American during the 25 years that I had the great privilege of writing the magazine's Mathematical Games column contents Preface xi CHAPTER ONE Coincidence 1 CHAPTER TWO The Binary Gray Code 11 CHAPTER THREE Polycubes 2 8 CHAPTER FOUR Bacon's Cipher 45 CHAPTER FIVE Doughnuts: Linked and Knotted 5 5 CONTENTS x CHAPTER SIX The Tour of the Arrows and Other Problems 6 8 CHAPTER SEVEN Napier's Bones 85 Napier's Abacus CHAPTER NINE Sim, Chomp and Racetrack CHAPTER TEN Elevators 123 CHAPTER ELEVEN Crossing Numbers 133 CHAPTER TWELVE Point Sets on the Sphere 145 CONTENTS xi Newcomb's Paradox 155 CHAPTER FOURTEEN Reflections on Newcomb's Paradox CHAPTER FIFTEEN Reverse the Fish and Other Problems 176 Look-See Proofs 192 CHAPTER SEVENTEEN Worm Paths 205 Waring's Problems CHAPTER NINETEEN Cram, Bynum and Quadraphage 232 CONTENTS xii CHAPTER TWENTY The I Ching 244 CHAPTER TWENTY-ONE The La$er Curve 257 Index of Names 273 Because this is the eleventh collection of my Scientijc American columns, there is little to say in a preface that I have not said before. -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Puzzling Modernity Permalink https://escholarship.org/uc/item/3b04m0tf Author Lorhan, Laura Beth Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Puzzling Modernity A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in English by Laura Beth Lorhan 2016 © Copyright by Laura Beth Lorhan 2016 ABSTRACT OF THE DISSERTATION Puzzling Modernity by Laura Beth Lorhan Doctor of Philosophy in English University of California, Los Angeles, 2016 Professor Michael A. North, Chair Puzzling Modernity approaches key issues in modernist scholarship, such as fractured subjectivity and modernism's notoriously vexed relationship with popular culture, from a distinctly new vantage point by situating American modernism within a previously unrecognized pattern of nationwide fascination with puzzles dating back to the 1880s. I argue that puzzles appealed to modernist authors as aesthetic models because they offer a framework for acknowledging the grim realities of modern life without sacrificing the possibility for reconnection and regaining a sense of wholeness, no matter how provisional. Yet, while puzzles offer a safe environment in which to test out solutions to life's dilemmas, they also participate in exclusionary discourses and advance regressive agendas, particularly when administered as intelligence tests. Far more than aesthetic models, then, puzzles serve modernist writers as tools for revealing and frequently subverting the rhetorical ends to which these seemingly innocent and trivial pastimes have been put. In the first chapter, I argue that the "cross-word puzzle ii school" label that detractors of modernism appended to T. -
Its Solution and Analogy to the Chinese Rings
The Chinese String Its solution and analogy to the Chinese Rings Andreas Christopher Höck Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig–Maximilians–Universität München vorgelegt von Andreas Christopher Höck München, den 04.05.2017 Erstgutachter: Prof. Dr. Andreas M. Hinz, LMU München Zweitgutachter: Prof. Dr. Jaka Smrekar, Univerza v Ljubljani Tag der mündlichen Prüfung: 07.09.2017 Zusammenfassung In der Kognitivpsychologie werden isomorphe mechanische Geschicklichkeitsspiele betrach- tet, um herauszufinden, wodurch Probleme ihre Schwierigkeit erhalten. Ein Beispiel für diese Art von Geschicklichkeitsspielen sind die zueinander isomorphen Spiele Turm von Hanoi und Monsters and Globes. Ihre Isomorphie ist durch das Vertauschen der Rollen der beweglichen und der festen Bestandteile gegeben. Ein weiteres Beispiel von zwei Geschicklichkeitsspielen, bei denen die Rollen der festen und beweglichen Bestandteile vertauscht sind, sind Chinesische Ringe und Chinese String. In dieser Dissertation wird der Zusammenhang zwischen Chinesi- sche Ringe und Chinese String genauer untersucht, um herauszufinden, inwiefern eine Isomor- phie zwischen diesen beiden gegeben ist. Zunächst wird eine Einleitung in Chinesische Ringe gegeben. Dabei werden Eigenschaften des zugehörigen Zustandsgraphen und der Zusammenhang zwischen Gros- und Gray-Code angege- ben. Darüber hinaus wird die Zugfolge der optimalen Lösung (mit abzählbar unendlich vielen Ringen), auch Gros-Folge genannt, betrachtet und festgestellt, dass diese gleich der "greedy square-free sequence" ist. Anschließend wird eine mechanische Lösung von Chinese String aufgezeigt. Mithilfe einer imaginären Linie werden Bewegungen definiert und diese Bewegungen werden verwendet, um einen rekursiven Lösungsalgorithmus für eine beliebige Anzahl an Ringen anzugeben. Anhand des Algorithmus werden weitere Eigenschaften der Lösung untersucht und es wird festgestellt, dass diese Lösung zum Lösen von Chinesische Ringe verwendet werden kann, da deren Zug- folgen identisch sind.