Journal of Shellfish Research

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Shellfish Research JOURNAL OF SHELLFISH RESEARCH VOLUME 2, NUMBER 1 JUNE 1982 The Journal of Shellfish Research (formerly Proceedings of the National Shellfisheries Association) is the official publication of the National Shellfisheries Association Editor Dr. Robert E. Hillman Battelle New England Marine Research Laboratory Duxbury, Massachusetts 02332 Managing Editor Dr. Edwin W. Cake, Jr. Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 Associate Editors Dr. Jay D. Andrews Cornell University Virginia Institute of Marine Sciences Ithaca, New York 14853 Gloucester Point, Virginia 23062 Dr. Richard A. Lutz Dr. Anthony Calabrese Nelson Biological Laboratories National Marine Fisheries Service Rutgers University Milford, Connecticut 06460 Piscataway, New Jersey 08854 Dr. Kenneth K. Chew Dr. Gilbert Pauley College of Fisheries College of Fisheries University of Washington University of Washington Seattle, Washington 98195 Seattle, Washington 98195 Dr. Paul A. Haefner, Jr. Dr. Daniel B. Quayle Rochester Institute of Technology Pacific Biological Laboratory Rochester, New York 14623 Nanaimo, British Columbia, Canada Dr. Herbert Hidu Dr. Aaron Rosenfield Ira C. Darling Center National Marine Fisheries Service University of Maine Oxford, Maryland 21654 Walpole, Maine 04573 Dr. Frederic M. Serchuk Dr. Louis Leibovitz National Marine Fisheries Service New York State College of Veterinary Medicine Woods Hole, Massachusetts 02543 Journal of Shellfish Research Volume 2, Number 1 June 1982 Journal of Shellfish Research, Vol. 2, No. 1, 1, 1982. This issue of the Journal of Shellfish Research is dedicated to the memory of JAMES BENNETT ENGLE AUG 1 2 1983 " JAMES BENNETT ENGLE, Jim or "Uncle Ben, as his reports including 12 in the Proceedings of the National many friends knew him, was born 25 July 1 900 in Newark, Shellfisheries Association, the forerunner of the Journal of NJ. He was educated at Newark College of Engineering, and Shellfish Research. He received many honors during his at Columbia and Rutgers universities. During his 35 years of lifetime including the Meritorius Service Award of the U.S. distinguished service as a shellfish biologist, Jim was employed Department of the Interior. by the U.S. Bureau of Fisheries, the Maryland Department Jim Engle was a long-time member of the National Shell- of Natural Resources, the Virginia Fisheries Laboratory, the fisheries Association (1940-1981). During those 41 years, U.S. Fish and Wildlife Service, the U.S.Bureau of Commercial he seldom missed an annual NSA meeting and served on Fisheries, and the U.S. National Marine Fisheries Service. numerous standing committees. He served as the Associa- He served as a Graduate Assistant with Dr. Thurlow C. tion's Vice-President from 1950 to 1952, and as President Nelson; as Assistant Director of the BCF Laboratory at from 1952 to 1953. Jim was elected to Honorary Member- Milford, CT; as Chiefof Shellfish Research in Yorktown, VA ship in 1970. and A nnapolis, MD; and as Director of the NMFS Laboratory JAMES BENNETTENGLE, shellfish biologist par he at Oxford, MD. He organized and became the first director excellence, was a man of high integrity and dedication; of the National Shellfish Advisory Service which later was loved and respected by his many, many friends and became the Sea Grant Marine Advisory Service. colleagues. His avocation was working with young people, Jim Engle's shellfish interests included oyster predators especially through the Boy Scouts of America. He passed is survived his (drills and seastarsj and associate mussels, seed beds and away 23 October 1981 at Easton, MD. He by and setting, and oyster resources and management. He conducted wife, Isabel, of Oxford, MD, two daughters, Nancy in NSA. We numerous field investigations from Long Island Sound to Susan, and a great many friends and colleagues us. have all his work and among Mississippi Sound including Delaware, Chesapeake, and benefited from presence We all miss him in NSA, but his spirit lives on. Mobile bays. He published at least 60 technical papers and Aaron Rosenfield and Edwin W. Cake, Jr. Journal of Shellfish Research, Vol. 2, No. 1, 3-13, 1982. GROWTH, MORTALITY, AND COPPER-NICKEL ACCUMULATION BY OYSTERS (CRASSOSTREA VIRGINICA) AT THE MORGANTOWN STEAM ELECTRIC STATION ON THE POTOMAC RIVER, MARYLAND GEORGE R. ABBE Academy of Natural Sciences of Philadelphia Benedict Estuarine Research Laboratory Benedict, Maryland 20612 ABSTRACT Growth of three size classes (initially 20-, 40-, and 80-mm shell height) of" the oyster Crassostrea virginica (Gmelin) was observed during a 23-month period beginning in December 1976 at the intake and discharge canal areas of the Potomac Electric Power Company's Morgantown generating station located on the Potomac River in Charles County, Maryland, and at a control area in Shady Side, Anne Arundel County, Maryland. A fourth size class (31 mm initial shell height), added to the study in October 1977, was observed for 13 months. In addition, 10 oysters were analyzed monthly from each area for uptake of copper and nickel. Shell growth of oysters was excellent in all three areas during the 1977 season (salinity >9 ppt), despite average discharge- canal temperatures 6 C above intake temperatures. Poor shell growth occurred in all three areas during the 1978 season, probably because of low salinity (< 6 ppt). Low salinity during 1978 and high discharge-canal temperatures eventually resulted in near total mortality among discharge-canal oysters. Analysis of regression-generated growth curves revealed that growth of controls was significantly greater (p < 0.001) than that of discharge-canal oysters in all four size classes, and growth of intake oysters was significantly greater (p ^ 0.002) than that of discharge canal oysters in three of four classes. However, controls grew more than intake oysters in two of four classes (p < 0.001), but intake oysters outgrew controls = in a third size class (p 0.002). Metal studies indicated no effect of plant operation on nickel accumulation, but uptake of copper was directly associated with operation. Oysters were able to eliminate much of the accumulated copper within 2 months of transfer to the control area. INTRODUCTION power plant on the Potomac River and at the Calvert Cliffs Nuclear Power Plant on Chesapeake Bay, respectively. Thermal effluents from electric generating stations may This a of growth, mortality, and have both beneficial and detrimental effects on oysters. paper presents study a of 13 C metal accumulation by tray-held oysters in the effluent Breeze ( 1971 ) showed that temperature increase (from 12° to 25°C) would increase the growth of hatchery- canal of the Potomac Electric Power Company's (PEPCO) produced seed oysters and thereby ensure survival after Morgantown generating station, a two-unit fossil-fueled planting and possibly shorten the time to harvest. Tinsman plant producing approximately 1,150 megawatts. The 6 and Maurer (1974) and Gilmore et al. (1975) also demon- once-through cooling systems uses 3.8 X 10 E/min (1.0 X 6 strated increased shell growth by oysters raised in heated 10 gpm) of Potomac River water which has a temperature waters, but Tinsman and Maurer (1974) found that the increase of up to 8.3°C as it passes through the 70-30 copper- wintertime advantage of oysters maintained in the effluent nickel condensers (Guiland 1977). Low-level chlorination of the Delmarva power plant in Indian River Bay, Delaware, to prevent biofouling is continuous during warm months was partially lost in summer when the oysters had poorer (when river temperature exceeds 10°C), with each unit meat condition and suffered higher mortalities than controls. receiving about 907 kg/day chlorine. Chlorine residuals A major problem of certain power plant effluents is are typically 0.02 to 0.05 mg/C at the condenser outlets that they contain elevated levels of metals acquired on and decay continues as the water moves along the 630-m transit through the plant. Because many generating stations discharge canal to the river. with once-through cooling systems use 70-30 copper-nickel Studies of growth and survival of oysters in this canal alloy condenser tubes, the uptake of these metals by nearby are not new. Powell (1973) spent several years determining oysters is a concern. O'Connor (1976) stated that the whether the canal could be used to overwinter very young Chalk Point generating station on the Patuxent River in hatchery seed. He stated that oysters could overwinter not be Maryland discharges 1.8 to 7.3 t (2 to 8 tons) of copper there with very high survival, but that they should annually to the river. Roosenburg (1969) found high copper left year-round because the salinity was often too low to concentrations in oysters near the Chalk Point discharge allow normal growth. The salinity of the Potomac near and showed that concentrations decreased as distance from Morgantown ranges from less than 5 ppt to about 12 ppt the plant increased. Abbe and Krueger (1977a) and Abbe (Simmonds and Berseth 1977), but was in the lower part of (1981a) have shown similar results at the Morgantown this range much of the early and mid 1970's(Abbe 1977). ABBE Loosanoff (1953) established that oysters do not grow well creek in Shady Side near the hatchery oysters which had at salinities less than 7.5 ppt, and feeding ceases below 5 ppt been removed from the discharge canal and returned to (Galtsoff 1964). Shady Side for the summer. Except during the winter, oysters were measured approximately once each month. MATERIALS AND METHODS Two replicates of five additional 70- to 90-mm oysters In December 1976, at the request of PEPCO, we began a were also collected monthly from each of the three areas study of the growth and mortality of three size classes of for determination of copper and nickel concentrations. the oyster Crassostrea virginica (Gmelin) in the discharge These oysters were scrubbed, rinsed with distilled water, canal and on the river side of the intake curtain wall of the shucked, rinsed again, and blotted dry.
Recommended publications
  • Biogeographical Homogeneity in the Eastern Mediterranean Sea. II
    Vol. 19: 75–84, 2013 AQUATIC BIOLOGY Published online September 4 doi: 10.3354/ab00521 Aquat Biol Biogeographical homogeneity in the eastern Mediterranean Sea. II. Temporal variation in Lebanese bivalve biota Fabio Crocetta1,*, Ghazi Bitar2, Helmut Zibrowius3, Marco Oliverio4 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy 2Department of Natural Sciences, Faculty of Sciences, Lebanese University, Hadath, Lebanon 3Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France 4Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy ABSTRACT: Lebanon (eastern Mediterranean Sea) is an area of particular biogeographic signifi- cance for studying the structure of eastern Mediterranean marine biodiversity and its recent changes. Based on literature records and original samples, we review here the knowledge of the Lebanese marine bivalve biota, tracing its changes during the last 170 yr. The updated checklist of bivalves of Lebanon yielded a total of 114 species (96 native and 18 alien taxa), accounting for ca. 26.5% of the known Mediterranean Bivalvia and thus representing a particularly poor fauna. Analysis of the 21 taxa historically described on Lebanese material only yielded 2 available names. Records of 24 species are new for the Lebanese fauna, and Lioberus ligneus is also a new record for the Mediterranean Sea. Comparisons between molluscan records by past (before 1950) and modern (after 1950) authors revealed temporal variations and qualitative modifications of the Lebanese bivalve fauna, mostly affected by the introduction of Erythraean species. The rate of recording of new alien species (evaluated in decades) revealed later first local arrivals (after 1900) than those observed for other eastern Mediterranean shores, while the peak in records in conjunc- tion with our samplings (1991 to 2010) emphasizes the need for increased field work to monitor their arrival and establishment.
    [Show full text]
  • STAFF WORKING PAPER SUMMARY of SELECTED PEARL HARBOR MARINE NATURAL RESOURCES DATA from 1999 – 2015 - in SUPPORT of PROPOSED PROJECT P 516 Prepared by Stephen H
    1 STAFF WORKING PAPER SUMMARY OF SELECTED PEARL HARBOR MARINE NATURAL RESOURCES DATA FROM 1999 – 2015 - IN SUPPORT OF PROPOSED PROJECT P 516 Prepared by Stephen H. Smith Marine Ecologist SSC Scientific Diving Services March 18, 2015 Introduction Overview. The objective of this Staff Working Paper is to summarize selected data gathered by the author between 1999 and February 2015. During that time period, the author conducted a variety of assessments throughout Pearl Harbor and the Pearl Harbor Entrance Channel. The specific resources which will be addressed in this partial summary are: 1) corals, 2) selected fin fish species and Essential Fish Habitat (EFH), 3) sea turtles, 4) miscellaneous and 5) perceived data gaps. This summary is not intended to reiterate material already presented in the Pearl Harbor INRMP or the many other documents which contain pertinent marine natural resource data; it is intended to summarize unpublished and/or unreported data gathered by the author. In this document, Pearl Harbor is defined as the area north of Hammer Point, as designated on Nautical Chart No. 19366 (Oahu South Coast Pearl Harbor). The Pearl Harbor Entrance Channel (PHEC) is defined as the area south of Hammer Point between the channel markers on the eastern and western sides of the PHEC and extending to the outermost Channel Marker Buoys (No. 1 on the west side and No. 2 on the east side). Figure 1 illustrates the boundaries of the P 516 project assessment area. All the data summarized in this document was gathered by the author, with periodic biological support from Donald Marx, and others.
    [Show full text]
  • Genetic Characterisation of Oyster Populations Along the North-Eastern
    African Journal of Marine Science Archimer December 2008, Volume 30, Number 3, Pages 489- http://archimer.ifremer.fr 495 http://dx.doi.org/10.2989/AJMS.2008.30.3.4.638 © 2008 NISC, Taylor & Francis ailable on the publisher Web site Genetic characterisation of oyster populations along the north-eastern coast of Tunisia S. Dridi1, 2, *, M. S. Romdhane2, S. Heurtebise3, M. El Cafsi1, P. Boudry3 and S. Lapègue4 1 Faculté des Sciences de Tunis, Département de Biologie, Unité de Physiologie et d’Ecophysiologie des Organismes Aquatiques, Campus Universitaire El Manar II, 2092 Tunis, Tunisia 2 blisher-authenticated version is av Institut National Agronomique de Tunis, Département des Sciences de la Production Animale et de la Pêche, Unité d’écosystèmes et ressources aquatiques, 43 Av. Charles Nicole, 1082 Tunis, Tunisia 3 Ifremer, UMR M100 Physiologie et Ecophysiologie des Mollusques Marins, 29280 Plouzané, France 4 Laboratoire Ifremer de Génétique et Pathologie, 17390 La Tremblade, France *: Corresponding author : S Dridi, email address : [email protected] Abstract: The taxonomy of oysters has been traditionally based on characteristics of the shell. More recently, the analysis of protein and DNA polymorphism has provided a means to overcome difficulties in distinguishing the different species of oysters based solely on shell morphology. In order to identify oysters of the Tunisian north-east coast, we sequenced a 16S rRNA mitochondrial fragment from 68 oysters sampled from the Bizert Lagoon and the Gulf of Hammamet in northern Tunisia. Comparison of oyster 16S rRNA sequences available in GenBank showed the presence of both Ostreola stentina and Crassostrea gigas in our samples, which could not be detected on the basis of shell morphology only.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Phylogeographic Study of the Dwarf Oyster, Ostreola Stentina
    Marine Biology Archimer, archive institutionnelle de l’Ifremer Volume 150, Number 1, October 2006 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s00227-006-0333-1 ©2006 Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris Sylvie Lapègue1, Inès Ben Salah2, Frederico M. Batista3, 4, Serge Heurtebise1, Lassad Neifar2 and Pierre Boudry1 (1) Laboratoire de Génétique et Pathologie, IFREMER, 17390 La Tremblade, France blisher-authenticated version is av (2) Faculté des Sciences de Sfax, Laboratoire d’écobiologie Animale, BP 802, 3038 Sfax, Tunisia (3) Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSul, Av. 5 de Outubro, 8700-305 Olhao, Portugal (4) Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal Corresponding author : [email protected] Abstract: Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I).
    [Show full text]
  • Monda Y , March 22, 2021
    NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 113th Annual Meeting March 22 − 25, 2021 Global Edition @ http://shellfish21.com Follow on Social Media: #shellfish21 NSA 113th ANNUAL MEETING (virtual) National Shellfisheries Association March 22—March 25, 2021 MONDAY, MARCH 22, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound Chesapeake Bay Monterey Bay SHELLFISH ONE HEALTH: SHELLFISH AQUACULTURE EPIGENOMES & 8:30-10:30 AM CEPHALOPODS OYSTER I RESTORATION & BUSINESS & MICROBIOMES: FROM SOIL CONSERVATION ECONOMICS TO PEOPLE WORKSHOP 10:30-10:45 AM MORNING BREAK THE SEA GRANT SHELLFISH ONE HEALTH: EPIGENOMES COVID-19 RESPONSE GENERAL 10:45-1:00 PM OYSTER I RESTORATION & & MICROBIOMES: FROM SOIL TO THE NEEDS OF THE CONTRIBUTED I CONSERVATION TO PEOPLE WORKSHOP SHELLFISH INDUSTRY 1:00-1:30 PM LUNCH BREAK WITH SPONSOR & TRADESHOW PRESENTATIONS PLENARY LECTURE: Roger Mann (Virginia Institute of Marine Science, USA) (LIVE) 1:30-2:30 PM Chesapeake Bay EASTERN OYSTER SHELLFISH ONE HEALTH: EPIGENOMES 2:30-3:45 PM GENOME CONSORTIUM BLUE CRABS VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP CONSERVATION TO PEOPLE WORKSHOP BLUE CRAB GENOMICS EASTERN OYSTER & TRANSCRIPTOMICS: SHELLFISH ONE HEALTH: EPIGENOMES 3:45–5:45 PM GENOME CONSORTIUM THE PROGRAM OF THE VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP BLUE CRAB GENOME CONSERVATION TO PEOPLE WORKSHOP PROJECT TUESDAY, MARCH 23, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound
    [Show full text]
  • Community Structure of a Molluscan Assemblage in an Anthropized Environment, Hammamet Marina, North-Eastern Tunisia
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 15: 751-760 (2015) DOI: 10.4194/1303-2712-v15_3_20 Community Structure of a Molluscan Assemblage in an Anthropized Environment, Hammamet Marina, North-Eastern Tunisia 1,* 2,3 1 Refka Elgharsalli , Lotfi Rabaoui , Nejla Aloui-Bejaoui 1 Institut National Agronomique de Tunisie, 43, Avenue Charles Nicolle, 1082 Tunis, Tunisia. 2 University of Tunis, Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Science of Tunis, 2092, El Manar, Tunisia. 3 University of Gabes, Higher Institute of Applied Biology of Medenine, El Jorf Street Km 22.5 – 4119 Medenine, Tunisia * Corresponding Author: Tel.: +21.620 951116 Received 26 December 2014 E-mail: [email protected] Accepted 21 October 2015 Abstract Hammamet Marina is the most important touristic port in the Gulf of Hammamet (Tunisia). The present work is a contribution to the knowledge of the functional diversity and structure of the malacofauna community in this area. Three different stations (A, B and C) within the port were sampled seasonally for a year (2005-2006). The mollusc assemblage studied was represented by 14 species (in totally 2669 ind. were found). Among the four mollusc classes recorded, bivalves were the best represented (73.76% of the total number species), followed by gastropods (22.02%), cephalopods (2.42%) and polyplacophores (1.80%). Atlanto-Mediterranean (42.85%) and Endemic Mediterranean (39.28%) taxa prevailed in the community, followed by Indo-Pacific (7.14%) and cosmopolitan species (3.57%). A clear spatial zonation was distinguished. The station B hosted the highest abundance of gastropods (309±19.92 ind.
    [Show full text]
  • The Last Alien Reaching Sicily: Isognomon Legumen (Gmelin, 1791) (Mollusca Bivalvia Isognomonidae)
    Biodiversity Journal, 2019, 10 (4): 337–342 https://doi.org/10.31396/Biodiv.Jour.2019.10.4.337.342 The last alien reaching Sicily: Isognomon legumen (Gmelin, 1791) (Mollusca Bivalvia Isognomonidae) Danilo Scuderi1 & Alfio Viola2 1I.I.S.S. “E. Majorana”, via L. Capuana 36, 95048 Scordia, Catania, Italy: [email protected] 2Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Sezione di Scienze della Terra, Palazzo Ramondetta, Corso Italia 57, Catania, Italy; e-mail: [email protected] ABSTRACT The finding of some living specimens of an alien bivalve of the genus Isognomon Lightfoot, 1786 (Mollusca Bivalvia Isognomonidae) attached to rocks is here reported in Sicily for the first time. This is the last of a series of numerous finding of alien molluscs reports in the same area, for which a human-mediated model was supposed. An attempt to indicate the age of the specimens are here furnished on the basis of the number of byssus filaments. Some further environmental notes underline how in recent times these alien species seem better integrated inside the indigenous benthic communities in the Southern Mediterranean coasts, being better allowed in the first settlement by the recent climatic changes and resulting ecologically well organized and structured as in the tropical environments of provenance. KEY WORDS Alien species; Mediterranean; invasive species; Sicily; Bivalves; Mollusca; Isognomon. Received 13.09.2019; accepted 21.11.2019; published online 11.12.2019 INTRODUCTION ships, whose traffic is more increased today (Zibro- wius, 1992). Due to the high increased number of alien spe- In the Mediterranean Sea two species of Isogno- cies signalled in the Mediterranean Sea, in the last mon Lightfoot, 1786 (Mollusca Bivalvia Isogno- decades the tropicalization in marine environments monidae) are reported: I.
    [Show full text]
  • Oyster Integrated Mapping and Monitoring Program Report for the State of Florida
    Oyster Integrated Mapping and Monitoring Program report for the State of Florida Item Type monograph Publisher Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute Download date 11/10/2021 01:47:04 Link to Item http://hdl.handle.net/1834/41152 ISSN 1930-1448 Oyster Integrated Mapping and Monitoring Program Report for the State of Florida KARA R. RADABAUGH, STEPHEN P. GEIGER, RYAN P. MOYER, EDITORS Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute Technical Report No. 22 • 2019 MyFWC.com Oyster Integrated Mapping and Monitoring Program Report for the State of Florida KARA R. RADABAUGH, STEPHEN P. GEIGER, RYAN P. MOYER, EDITORS Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute 100 Eighth Avenue Southeast St. Petersburg, Florida 33701 MyFWC.com Technical Report 22 • 2019 Ron DeSantis Governor of Florida Eric Sutton Executive Director Florida Fish and Wildlife Conservation Commission The Fish and Wildlife Research Institute is a division of the Florida Fish and Wildlife Conservation Commission, which “[manages] fish and wildlife resources for their long-term well-being and the benefit of people.” The Institute conducts applied research pertinent to managing fishery resources and species of special concern in Florida. Pro- grams focus on obtaining the data and information that managers of fish, wildlife, and ecosystems need to sustain Florida’s natural resources. Topics include managing recreationally and commercially important fish and wildlife species; preserving, managing, and restoring terrestrial, freshwater, and marine habitats; collecting information related to population status, habitat requirements, life history, and recovery needs of upland and aquatic species; synthesizing ecological, habitat, and socioeconomic information; and developing educational and outreach programs for classroom educators, civic organizations, and the public.
    [Show full text]
  • Florida Keys Species List
    FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P.
    [Show full text]
  • Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2011 Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions Kristina M. Hill College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Developmental Biology Commons, Evolution Commons, and the Molecular Biology Commons Recommended Citation Hill, Kristina M., "Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions" (2011). Dissertations, Theses, and Masters Projects. Paper 1539617909. https://dx.doi.org/doi:10.25773/v5-a0te-9079 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Understanding the Origins, Dispersal, and Evolution of Bonamia Species (Phylum Haplosporidia) Based on Genetic Analyses of Ribosomal RNA Gene Regions A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science by Kristina M. Hill 2011 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science CH-s 7n - "UuUL ' Kristina Marie Hill Approved, May 2011 w. n Eugene M. Burreson, Ph.D Advisor Kimberly S. Reece, Ph.D.
    [Show full text]
  • 1 Northwest Florida Species List
    NORTHWEST FLORIDA SPECIES LIST This list, which contains shells found in the onshore and offshore waters of the Florida Panhandle, was prepared by the members of the Gulf Coast Shell Club. The list is arranged alphabetically by family. The numbers to the left of the shell name refer to the corresponding species as found in American Seashells, Second Edition by Dr R. Tucker Abbott. An asterisk indicates that a name change to the family, species, genus, (or all) has occurred since publication. Shells annotated with a superscript 1 indicate form names that may or may not be valid but are useful for identification. Shells annotated with a superscript 2 are shells from the 1994 Keeler and Robertson survey of the Apalachicola Marine Estuary and immediate offshore areas and represent species not currently held by GCSC members but that are deemed native to our area. Common name for the shell and its normal adult size range columns are included. There are 635 shells (including forms) on this list as of the latest update in March, 2013. Our thanks go to Dr. Harry Lee of the Jacksonville Shell Club for his assistance in this compilation. A caution: Any list of this type is subject to frequent name changes as the science involved progresses. GASTROPODA Family/Genus/Species Common Name Size (mm) ACTEONIDAE 3888 Acteon candens Rehder, 1939 Rehder’s Baby Bubble 5-10 3887 Acteon (Rictaxis) punctostriatus (C B Adams, 1840)* Pitted Baby Bubble 3-8 APLYSIIDAE (Nudibranch) Aplysia fasciata Poiret, 1789 Mottled Sea Hare 50 4166 Aplysia dactylomela Rang, 1828 Spotted Sea Hare 100-125 ARCHITECTICIDAE 0938 Architectonica nobilis Roding, 1798 Common Sundial 20-64 0943 Psilaxis krebsii (Morch, 1875) Beaded Sundial 7-13 BUCCINIDAE 2425 Antillophos candeanus (d’Orbigny, 1842)* Beaded Phos 12-30 2398 Engina cf.
    [Show full text]