LECTURE Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Computations in Algebraic Geometry with Macaulay 2
Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
Arxiv:2010.06953V2 [Math.RA] 23 Apr 2021
IDENTITIES AND BASES IN THE HYPOPLACTIC MONOID ALAN J. CAIN, ANTÓNIO MALHEIRO, AND DUARTE RIBEIRO Abstract. This paper presents new results on the identities satisfied by the hypoplactic monoid. We show how to embed the hypoplactic monoid of any rank strictly greater than 2 (including infinite rank) into a direct product of copies of the hypoplactic monoid of rank 2. This confirms that all hypoplactic monoids of rank greater than or equal to 2 satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the variety generated by the hypoplactic monoid has finite axiomatic rank, by giving a finite basis for it. 1. Introduction A (non-trivial) identity is a formal equality u ≈ v, where u and v are words over some alphabet of variables, which is not of the form u ≈ u. If a monoid is known to satisfy an identity, an important question is whether the set of identities it satisfies is finitely based, that is, if all these identities are consequences of those in some finite subset (see [37, 42]). The plactic monoid plac, also known as the monoid of Young tableaux, is an important algebraic structure, first studied by Schensted [38] and Knuth [23], and later studied in depth by Lascoux and Schützenberger [27]. It is connected to many different areas of Mathematics, such as algebraic combinatorics, symmetric functions [29], crystal bases [4] and representation theory [14]. In particular, the question of identities in the plactic monoid has received a lot of attention recently [26, 20]. Finitely-generated polynomial-growth groups are virtually nilpotent and so sat- isfy identities [16]. -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
Vita BERND STURMFELS Department of Mathematics, University of California, Berkeley, CA 94720 Phone
Vita BERND STURMFELS Department of Mathematics, University of California, Berkeley, CA 94720 Phone: (510) 642 4687, Fax: (510) 642 8204, [email protected] M.A. [Diplom] TH Darmstadt, Germany, Mathematics and Computer Science, 1985 Ph.D. [Dr. rer. nat.] TH Darmstadt, Germany, Mathematics, 1987 Ph.D. University of Washington, Seattle, Mathematics, 1987 Professional Experience: 1987–1988 Postdoctoral Fellow, I.M.A., University of Minnesota, Minneapolis 1988–1989 Assistant Professor, Research Institute for Symbolic Computation, (RISC-Linz), Linz, Austria 1989–1991 Assistant Professor, Department of Mathematics, Cornell University 1992–1996 Associate Professor, Department of Mathematics, Cornell University 1994–2001 Professor, Department of Mathematics, University of California, Berkeley 2001– Professor, Department of Mathematics and Computer Science, UC Berkeley Academic Honors: 1986 - 1987 Alfred P. Sloan Doctoral Dissertation Fellowship 1991 - 1993 Alfred P. Sloan Research Fellow 1992 - 1997 National Young Investigator (NSF) 1992 - 1997 David and Lucile Packard Fellowship 1999 Lester R. Ford Prize for Expository Writing (MAA) 2000-2001 Miller Research Professorship, UC Berkeley Spring 2003 John von Neumann Professor, Technical University M¨unchen 2003-2004 Hewlett-Packard Research Professor at MSRI Berkeley July 2004 Clay Mathematics Institute Senior Scholar Research Interests: Computational Algebra, Combinatorics, Algebraic Geometry Selected Professional Activities: Visiting Positions: D´epartment de Math´ematiques, Universit´ede Nice, France, Spring 1989 Mathematical Sciences Research Institute, Berkeley, Fall 1992 Courant Institute, New York University, 1994–95 RIMS, Kyoto University, Japan, 1997–98 Current Editorial Board Membership: Journal of the American Mathematical Society, Duke Mathematical Journal, Collecteana Mathematica, Beitr¨agezur Geometrie und Algebra, Order, Discrete and Computational Geometry, Applicable Algebra (AAECC) Journal of Combinatorial Theory (Ser. -
April 2017 Table of Contents
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society April 2017 Volume 64, Number 4 AMS Prize Announcements page 311 Spring Sectional Sampler page 333 AWM Research Symposium 2017 Lecture Sampler page 341 Mathematics and Statistics Awareness Month page 362 About the Cover: How Minimal Surfaces Converge to a Foliation (see page 307) MATHEMATICAL CONGRESS OF THE AMERICAS MCA 2017 JULY 2428, 2017 | MONTREAL CANADA MCA2017 will take place in the beautiful city of Montreal on July 24–28, 2017. The many exciting activities planned include 25 invited lectures by very distinguished mathematicians from across the Americas, 72 special sessions covering a broad spectrum of mathematics, public lectures by Étienne Ghys and Erik Demaine, a concert by the Cecilia String Quartet, presentation of the MCA Prizes and much more. SPONSORS AND PARTNERS INCLUDE Canadian Mathematical Society American Mathematical Society Pacifi c Institute for the Mathematical Sciences Society for Industrial and Applied Mathematics The Fields Institute for Research in Mathematical Sciences National Science Foundation Centre de Recherches Mathématiques Conacyt, Mexico Atlantic Association for Research in Mathematical Sciences Instituto de Matemática Pura e Aplicada Tourisme Montréal Sociedade Brasileira de Matemática FRQNT Quebec Unión Matemática Argentina Centro de Modelamiento Matemático For detailed information please see the web site at www.mca2017.org. AMERICAN MATHEMATICAL SOCIETY PUSHING LIMITS From West Point to Berkeley & Beyond PUSHING LIMITS FROM WEST POINT TO BERKELEY & BEYOND Ted Hill, Georgia Tech, Atlanta, GA, and Cal Poly, San Luis Obispo, CA Recounting the unique odyssey of a noted mathematician who overcame military hurdles at West Point, Army Ranger School, and the Vietnam War, this is the tale of an academic career as noteworthy for its o beat adventures as for its teaching and research accomplishments. -
I93&-J ZARISKI on ALGEBRAIC SURFACES to Come, by Bringing
I93&-J ZARISKI ON ALGEBRAIC SURFACES 13 to come, by bringing within their immediate reach the best of what has been achieved in the theory of Fourier series. J. D. TAMARKIN ZARISKI ON ALGEBRAIC SURFACES Algebraic Surfaces. By Oscar Zariski. Ergebnisse der Mathematischen Wissen schaften, Volume 3, Berlin, 1935. v+198 pp. We are facing today, in the birational geometry of surfaces and varieties, more than in any other chapter of mathematics, the sharp need of a thorough going and critical exposition. In a subject reaching out in so many directions, the task is bound to be arduous. Nevertheless it is surely urgent and for two reasons. In the first place, a systematic examination of the positions acquired is destined to be of considerable value in subsequent campaigns. In the second place, the territory already conquered and safely held is exceedingly beautiful and deserves to be admired by tourists and not merely by members of the vig orous, but small, conquering army. To speak less metaphorically, in this quarter of mathematics "cantorian" criticism has not penetrated as deeply as in others. This has resulted in a widespread attitude of doubt towards the science, which it would be in the interest of all to dispel as rapidly as possible. Nothing will contribute more to this worthy end than Zariski's splendid book. It is indeed the first time that a competent specialist, informed on all phases of the subject, has examined it carefully and critically. The result is a most interesting and valuable monograph for the general mathematician, which is, in addition, an indispensable and standard vade mecum for all students of these questions. -
Curriculum Vitae
Paul Breiding | Curriculum Vitae Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany Q [email protected] • paulbreiding.org • PBrdng u Paul Breiding • 7 @_pbrdng • born 12th of May 1988, german citizenship Max-Plack-Institute for Mathematics in the Sciences Leipzig Head of Emmy Noether Research Group: Numerical and Probabilistic Nonlinear Algebra Since 04/2021 University of Kassel Substitute Professor for Computeralgebra 11/2020 – 03/2021 Akademie der Wissenschaften und der Literatur Mainz Member of the Junge Akademie 04/2020 – 03/2024 Parental leave 7 months in total 10/2019 – 11/2019 and 04/2020 – 10/2020 Technische Universität Berlin Postdoctoral researcher in the algorithmic algebra research group 04/2019 – 10/2020 Max-Plack-Institute for Mathematics in the Sciences Leipzig Postdoctoral researcher in the nonlinear algebra research group 10/2017 – 03/2019 Technische Universität Berlin PhD student with Prof. Dr. Bürgisser 12/2013 – 09/2017 Date of thesis defense: July 25, 2017. Evaluation ’summa cum laude’. Simons Institute for the Theory of Computing Visiting graduate student 08/2014 – 10/2014 Algorithms and Complexity in Algebraic Geometry Education Georg-August-Universität Göttingen Master of Science 10/2011 – 11/2013 Evaluation: excellent. Universidad de Sevilla Undergraduate studies, part of the Erasmus exchange program 02/2011 – 09/2011 Georg-August Universität Göttingen Bachelor of Science 10/2008 – 09/2011 Languages........................................................................................................................ -
Daniel Gorenstein 1923-1992
Daniel Gorenstein 1923-1992 A Biographical Memoir by Michael Aschbacher ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. DANIEL GORENSTEIN January 3, 1923–August 26, 1992 Elected to the NAS, 1987 Daniel Gorenstein was one of the most influential figures in mathematics during the last few decades of the 20th century. In particular, he was a primary architect of the classification of the finite simple groups. During his career Gorenstein received many of the honors that the mathematical community reserves for its highest achievers. He was awarded the Steele Prize for mathemat- New Jersey University of Rutgers, The State of ical exposition by the American Mathematical Society in 1989; he delivered the plenary address at the International Congress of Mathematicians in Helsinki, Finland, in 1978; Photograph courtesy of of Photograph courtesy and he was the Colloquium Lecturer for the American Mathematical Society in 1984. He was also a member of the National Academy of Sciences and of the American By Michael Aschbacher Academy of Arts and Sciences. Gorenstein was the Jacqueline B. Lewis Professor of Mathematics at Rutgers University and the founding director of its Center for Discrete Mathematics and Theoretical Computer Science. He served as chairman of the universi- ty’s mathematics department from 1975 to 1982, and together with his predecessor, Ken Wolfson, he oversaw a dramatic improvement in the quality of mathematics at Rutgers. Born and raised in Boston, Gorenstein attended the Boston Latin School and went on to receive an A.B. -
Lectures on Algebraic Statistics
Lectures on Algebraic Statistics Mathias Drton, Bernd Sturmfels, Seth Sullivant September 27, 2008 2 Contents 1 Markov Bases 7 1.1 Hypothesis Tests for Contingency Tables . 7 1.2 Markov Bases of Hierarchical Models . 17 1.3 The Many Bases of an Integer Lattice . 26 2 Likelihood Inference 35 2.1 Discrete and Gaussian Models . 35 2.2 Likelihood Equations for Implicit Models . 46 2.3 Likelihood Ratio Tests . 54 3 Conditional Independence 67 3.1 Conditional Independence Models . 67 3.2 Graphical Models . 75 3.3 Parametrizations of Graphical Models . 85 4 Hidden Variables 95 4.1 Secant Varieties in Statistics . 95 4.2 Factor Analysis . 105 5 Bayesian Integrals 113 5.1 Information Criteria and Asymptotics . 113 5.2 Exact Integration for Discrete Models . 122 6 Exercises 131 6.1 Markov Bases Fixing Subtable Sums . 131 6.2 Quasi-symmetry and Cycles . 136 6.3 A Colored Gaussian Graphical Model . 139 6.4 Instrumental Variables and Tangent Cones . 143 6.5 Fisher Information for Multivariate Normals . 150 6.6 The Intersection Axiom and Its Failure . 152 6.7 Primary Decomposition for CI Inference . 155 6.8 An Independence Model and Its Mixture . 158 7 Open Problems 165 4 Contents Preface Algebraic statistics is concerned with the development of techniques in algebraic geometry, commutative algebra, and combinatorics, to address problems in statis- tics and its applications. On the one hand, algebra provides a powerful tool set for addressing statistical problems. On the other hand, it is rarely the case that algebraic techniques are ready-made to address statistical challenges, and usually new algebraic results need to be developed. -
The First One Hundred Years
The Maryland‐District of Columbia‐Virginia Section of the Mathematical Association of America: The First One Hundred Years Caren Diefenderfer Betty Mayfield Jon Scott November 2016 v. 1.3 The Beginnings Jon Scott, Montgomery College The Maryland‐District of Columbia‐Virginia Section of the Mathematical Association of America (MAA) was established, just one year after the MAA itself, on December 29, 1916 at the Second Annual Meeting of the Association held at Columbia University in New York City. In the minutes of the Council Meeting, we find the following: A section of the Association was established for Maryland and the District of Columbia, with the possible inclusion of Virginia. Professor Abraham Cohen, of Johns Hopkins University, is the secretary. We also find, in “Notes on the Annual Meeting of the Association” published in the February, 1917 Monthly, The Maryland Section has just been organized and was admitted by the council at the New York meeting. Hearty cooperation and much enthusiasm were reported in connection with this section. The phrase “with the possible inclusion of Virginia” is curious, as members from all three jurisdictions were present at the New York meeting: seven from Maryland, one from DC, and three from Virginia. However, the report, “Organization of the Maryland‐Virginia‐District of Columbia Section of the Association” (note the order!) begins As a result of preliminary correspondence, a group of Maryland mathematicians held a meeting in New York at the time of the December meeting of the Association and presented a petition to the Council for authority to organize a section of the Association in Maryland, Virginia, and the District of Columbia.