Remarkable Mathematicians
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roots of L-Functions of Characters Over Function Fields, Generic
Roots of L-functions of characters over function fields, generic linear independence and biases Corentin Perret-Gentil Abstract. We first show joint uniform distribution of values of Kloost- erman sums or Birch sums among all extensions of a finite field Fq, for ˆ almost all couples of arguments in Fq , as well as lower bounds on dif- ferences. Using similar ideas, we then study the biases in the distribu- tion of generalized angles of Gaussian primes over function fields and primes in short intervals over function fields, following recent works of Rudnick–Waxman and Keating–Rudnick, building on cohomological in- terpretations and determinations of monodromy groups by Katz. Our results are based on generic linear independence of Frobenius eigenval- ues of ℓ-adic representations, that we obtain from integral monodromy information via the strategy of Kowalski, which combines his large sieve for Frobenius with a method of Girstmair. An extension of the large sieve is given to handle wild ramification of sheaves on varieties. Contents 1. Introduction and statement of the results 1 2. Kloosterman sums and Birch sums 12 3. Angles of Gaussian primes 14 4. Prime polynomials in short intervals 20 5. An extension of the large sieve for Frobenius 22 6. Generic maximality of splitting fields and linear independence 33 7. Proof of the generic linear independence theorems 36 References 37 1. Introduction and statement of the results arXiv:1903.05491v2 [math.NT] 17 Dec 2019 Throughout, p will denote a prime larger than 5 and q a power of p. ˆ 1.1. Kloosterman and Birch sums. -
Publications of Members, 1930-1954
THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes. -
License Or Copyright Restrictions May Apply to Redistribution; See Https
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use EMIL ARTIN BY RICHARD BRAUER Emil Artin died of a heart attack on December 20, 1962 at the age of 64. His unexpected death came as a tremendous shock to all who knew him. There had not been any danger signals. It was hard to realize that a person of such strong vitality was gone, that such a great mind had been extinguished by a physical failure of the body. Artin was born in Vienna on March 3,1898. He grew up in Reichen- berg, now Tschechoslovakia, then still part of the Austrian empire. His childhood seems to have been lonely. Among the happiest periods was a school year which he spent in France. What he liked best to remember was his enveloping interest in chemistry during his high school days. In his own view, his inclination towards mathematics did not show before his sixteenth year, while earlier no trace of mathe matical aptitude had been apparent.1 I have often wondered what kind of experience it must have been for a high school teacher to have a student such as Artin in his class. During the first world war, he was drafted into the Austrian Army. After the war, he studied at the University of Leipzig from which he received his Ph.D. in 1921. He became "Privatdozent" at the Univer sity of Hamburg in 1923. -
Emil Artin in America
MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 321–330 S 0273-0979(2012)01398-8 Article electronically published on December 18, 2012 CREATING A LIFE: EMIL ARTIN IN AMERICA DELLA DUMBAUGH AND JOACHIM SCHWERMER 1. Introduction In January 1933, Adolf Hitler and the Nazi party assumed control of Germany. On 7 April of that year the Nazis created the notion of “non-Aryan descent”.1 “It was only a question of time”, Richard Brauer would later describe it, “until [Emil] Artin, with his feeling for individual freedom, his sense of justice, his abhorrence of physical violence would leave Germany” [5, p. 28]. By the time Hitler issued the edict on 26 January 1937, which removed any employee married to a Jew from their position as of 1 July 1937,2 Artin had already begun to make plans to leave Germany. Artin had married his former student, Natalie Jasny, in 1929, and, since she had at least one Jewish grandparent, the Nazis classified her as Jewish. On 1 October 1937, Artin and his family arrived in America [19, p. 80]. The surprising combination of a Roman Catholic university and a celebrated American mathematician known for his gnarly personality played a critical role in Artin’s emigration to America. Solomon Lefschetz had just served as AMS president from 1935–1936 when Artin came to his attention: “A few days ago I returned from a meeting of the American Mathematical Society where as President, I was particularly well placed to know what was going on”, Lefschetz wrote to the president of Notre Dame on 12 January 1937, exactly two weeks prior to the announcement of the Hitler edict that would influence Artin directly. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Emmy Noether: the Mother of Modern Algebra Reviewed by Benno Artmann
Book Review Emmy Noether: The Mother of Modern Algebra Reviewed by Benno Artmann Emmy Noether: The Mother of Modern Algebra The author has to be M. B. W. Tent content with rather A. K. Peters, 2008 general information US$29.00, 200 pages about “abstract al- ISBN-13:978-1568814308 gebra” and has to reduce the few ab- The catalogue of the Library of Congress classifies solutely necessary this book as juvenile literature, and in this respect mathematical defini- it may serve its intentions well. Beyond that, a per- tions to the capabili- son not familiar with Emmy Noether’s (1882–1935) ties of advanced high life and the academic and political situations in school students, as in Germany in the years between 1900 and 1935 may the case of an “ideal” profit from the general picture the book provides on page 89. of these times, even though it may sometimes not One thing, how- be easy to distinguish between facts and fiction. ever, that could eas- The chapters of the book are: I, Childhood; ily be corrected is to II, Studying at the University; III, The Young be found on pages Scholar; IV, Emmy Noether at Her Prime Time in 105–106. Here the author reports that the stu- Göttingen; and V, Exile. dents were “shuffling their feet loudly” when the The book is not an historical work in the aca- professor entered the classroom and did so again demic sense. By contrast, and in agreement with in appreciation at the end of the lecture. Just the her intentions, the author creates a lively picture opposite is right, as the reviewer remembers from more in the sense of a novel—letting various actors his own student days: One stamped the feet at the talk in direct speech, as well as providing as many beginning and end, but shuffling the feet was a anecdotes as she could get hold of and inventing sign of extreme displeasure during or at the end stories that in her opinion fit into the general of the hour. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
Amalie (Emmy) Noether
Amalie (Emmy) Noether Female Mathematicians By Ella - Emmy was born in 1882 and her father was a math professor at the University of Erlangen During her Life and that's one of the reason why she started to be interested in math - She couldn’t enroll in the college Erlangen because she was a woman but she did audit the classes. Also, when Emmy was on staff of Göttingen University but didn’t get paid to lecture like her male colleagues - At this time girls were only allowed University of Erlangen in Germany to go to "finishing school,” where they learn to teach. Emmy became certified to teach French and English but never did because she pursued mathematics. Emmay’s Accomplishments - Emmy Noether discovered the link between conservation laws and symmetries. Conservation laws is when a particular quantity must stay constant. For example, energy can’t be created or destroyed. Symmetries is the changes that can be made without changing the way the object looks or acts. For example, it doesn’t matter how you rotate or change the direction of a sphere it will always appear the same. - She also found noncommutative algebras which is when there is a specific order that numbers be multiplied to solve the equation. The Importance of her Accomplishments - The link between conservation laws and symmetries is called Noether’s Theorem. It is important because it gives us insight into conservation laws. Also, it is important because it shows scientists that repeating an experiment at different times won’t change the results. Timeline Left Germany to teach in America Received her Ph D Germany became an Born unsafe place to live for the college Erlangen a Jew like herself. -
1 INTRO Welcome to Biographies in Mathematics Brought to You From
INTRO Welcome to Biographies in Mathematics brought to you from the campus of the University of Texas El Paso by students in my history of math class. My name is Tuesday Johnson and I'll be your host on this tour of time and place to meet the people behind the math. EPISODE 1: EMMY NOETHER There were two women I first learned of when I started college in the fall of 1990: Hypatia of Alexandria and Emmy Noether. While Hypatia will be the topic of another episode, it was never a question that I would have Amalie Emmy Noether as my first topic of this podcast. Emmy was born in Erlangen, Germany, on March 23, 1882 to Max and Ida Noether. Her father Max came from a family of wholesale hardware dealers, a business his grandfather started in Bruchsal (brushal) in the early 1800s, and became known as a great mathematician studying algebraic geometry. Max was a professor of mathematics at the University of Erlangen as well as the Mathematics Institute in Erlangen (MIE). Her mother, Ida, was from the wealthy Kaufmann family of Cologne. Both of Emmy’s parents were Jewish, therefore, she too was Jewish. (Judiasm being passed down a matrilineal line.) Though Noether is not a traditional Jewish name, as I am told, it was taken by Elias Samuel, Max’s paternal grandfather when in 1809 the State of Baden made the Tolerance Edict, which required Jews to adopt Germanic names. Emmy was the oldest of four children and one of only two who survived childhood. -
Emmy Noether, Greatest Woman Mathematician Clark Kimberling
Emmy Noether, Greatest Woman Mathematician Clark Kimberling Mathematics Teacher, March 1982, Volume 84, Number 3, pp. 246–249. Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). With more than 100,000 members, NCTM is the largest organization dedicated to the improvement of mathematics education and to the needs of teachers of mathematics. Founded in 1920 as a not-for-profit professional and educational association, NCTM has opened doors to vast sources of publications, products, and services to help teachers do a better job in the classroom. For more information on membership in the NCTM, call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright March 1982 by the National Council of Teachers of Mathematics. All rights reserved. mmy Noether was born over one hundred years ago in the German university town of Erlangen, where her father, Max Noether, was a professor of Emathematics. At that time it was very unusual for a woman to seek a university education. In fact, a leading historian of the day wrote that talk of “surrendering our universities to the invasion of women . is a shameful display of moral weakness.”1 At the University of Erlangen, the Academic Senate in 1898 declared that the admission of women students would “overthrow all academic order.”2 In spite of all this, Emmy Noether was able to attend lectures at Erlangen in 1900 and to matriculate there officially in 1904.