4Th European Meeting of the I0BC/Wprs Working Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Sustainability of the Olive Production Systems
Evolution and sustainability of the olive production systems Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Quesada-Moraga E., Trapero A. in Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez Escobar R. (ed.), Garrido A. (ed.), López-Miranda J. (ed.), Msallem M. (ed.), Parras M. (ed.), Rallo L. (ed.), Zanoli R. (ed.). Present and future of the Mediterranean olive sector Zaragoza: CIHEAM / IOC Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 106 2013 pages 11-42 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6803 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Q uesada- Moraga E., Trapero A. Evolution and sustainability of the olive production systems. In : Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez -
The Entomologist's Record and Journal of Variation
M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. -
Insects Associated with Fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with Special Reference to the Tephritidae (Diptera)
D. Elmo Hardy Memorial Volume. Contributions to the Systematics and 135 Evolution of Diptera. Edited by N.L. Evenhuis & K.Y. Kaneshiro. Bishop Museum Bulletin in Entomology 12: 135–164 (2004). Insects associated with fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with special reference to the Tephritidae (Diptera) ROBERT S. COPELAND Department of Entomology, Texas A&M University, College Station, Texas 77843 USA, and International Centre of Insect Physiology and Ecology, Box 30772, Nairobi, Kenya; email: [email protected] IAN M. WHITE Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; e-mail: [email protected] MILLICENT OKUMU, PERIS MACHERA International Centre of Insect Physiology and Ecology, Box 30772, Nairobi, Kenya. ROBERT A. WHARTON Department of Entomology, Texas A&M University, College Station, Texas 77843 USA; e-mail: [email protected] Abstract Collections of fruits from indigenous species of Oleaceae were made in Kenya between 1999 and 2003. Members of the four Kenyan genera were sampled in coastal and highland forest habitats, and at altitudes from sea level to 2979 m. Schrebera alata, whose fruit is a woody capsule, produced Lepidoptera only, as did the fleshy fruits of Jasminum species. Tephritid fruit flies were reared only from fruits of the oleaceous subtribe Oleinae, including Olea and Chionanthus. Four tephritid species were reared from Olea. The olive fly, Bactrocera oleae, was found exclusively in fruits of O. europaea ssp. cuspidata, a close relative of the commercial olive, Olea europaea ssp. europaea. Olive fly was reared from 90% (n = 21) of samples of this species, on both sides of the Rift Valley and at elevations to 2801 m. -
Diversity of the Moth Fauna (Lepidoptera: Heterocera) of a Wetland Forest: a Case Study from Motovun Forest, Istria, Croatia
PERIODICUM BIOLOGORUM UDC 57:61 VOL. 117, No 3, 399–414, 2015 CODEN PDBIAD DOI: 10.18054/pb.2015.117.3.2945 ISSN 0031-5362 original research article Diversity of the moth fauna (Lepidoptera: Heterocera) of a wetland forest: A case study from Motovun forest, Istria, Croatia Abstract TONI KOREN1 KAJA VUKOTIĆ2 Background and Purpose: The Motovun forest located in the Mirna MITJA ČRNE3 river valley, central Istria, Croatia is one of the last lowland floodplain 1 Croatian Herpetological Society – Hyla, forests remaining in the Mediterranean area. Lipovac I. n. 7, 10000 Zagreb Materials and Methods: Between 2011 and 2014 lepidopterological 2 Biodiva – Conservation Biologist Society, research was carried out on 14 sampling sites in the area of Motovun forest. Kettejeva 1, 6000 Koper, Slovenia The moth fauna was surveyed using standard light traps tents. 3 Biodiva – Conservation Biologist Society, Results and Conclusions: Altogether 403 moth species were recorded Kettejeva 1, 6000 Koper, Slovenia in the area, of which 65 can be considered at least partially hygrophilous. These results list the Motovun forest as one of the best surveyed regions in Correspondence: Toni Koren Croatia in respect of the moth fauna. The current study is the first of its kind [email protected] for the area and an important contribution to the knowledge of moth fauna of the Istria region, and also for Croatia in general. Key words: floodplain forest, wetland moth species INTRODUCTION uring the past 150 years, over 300 papers concerning the moths Dand butterflies of Croatia have been published (e.g. 1, 2, 3, 4, 5, 6, 7, 8). -
Chris Olukayode Adedire Fesn " 2·
..,.. CHRIS OLUKAYODE ADEDIRE FESN B.Sc., M.Sc (Ilorin), Ph.D. (lfe) Professor- of Etitomology' " 2· _ place between individuals, between collectivities, or between individuals and collectivities. Intergroup as well as intragroup conflicts are perennial features of social life". In the present context, conflict may be conceptualised as competition for the same resources; notably food, water, nutrients etc - except mating partners and it is interspecific. The Bible attests to the fact that there was ecological equilibrium at the dawn of creation because God said that all the things He created were good (Genesis 1:3 I). However, a significant step in the cultural evolution of man is the development oflarge scale cu Itivation or crops or monoculture and the capacity to store the excess crops so produced. This step, ' significant as it is, also led to the creation of artificial environment for insects; thus resulting in ecological imbalances. The built-up environment, road constructions, impoundment of inland waterways and various other activities associated with human development have all created breeding sites for some insects and intermediate hosts of the causative organisms of diseases at the expense of their natural enem ies. It is apparent, therefore, that either overtly or covertly, many human activities result into conflict either with fellow humans or with other components ofhis other biotic or abiotic environment. Consequently, cdriflicts in this context may be perceived as an integral part of human existence and may not necessarily result in the destruction of human society even though they start and terminate with or without human intervention. Sandole (1993) suggested that nothing.was inherently wrong with conflict but, instead, it.is seen as a catalyst for promoting social development, higher degree social order and new awareness in cooperative living. -
ذﺑﺎﺑﺔ ﺛﻣﺎر اﻟزﯾﺗون Olive Fruit Fly Bactrocera Oleae (Rossi) (Diptera: Tephritidae
ذبابة ثمار الزيتون Olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) Other Scientific Names Bactrocera (Daculus) oleae Daculus oleae (Gmelin) Dacus oleae (Gmelin) Musca oleae (Gmelin) Introduction The olive fruit fly, Bactrocera oleae (Rossi) (formerly Dacus oleae), is a serious pest of olives in most of the countries around the Mediterranean sea. The larvae are monophagous, and feed exclusively on olive fruits. Adults feed on nectar, honey dew, and other opportunistic sources of liquid or semi-liquid food. The damage caused by tunneling of larvae in the fruit results in about 30 percent loss of the olive crop in Mediterranean countries, and especially in Greece and Italy where large commercial production occurs. In Jordan, during heavy infestations more loss occur. Figure 1. Third instar larva of the olive fruit fly, Bactrocera oleae (Rossi). Photograph by Giancarlo Dessì, Istituto Professionale Statale per l'Agricoltura e l'Ambiente "Cettolini" di Cagliari. مناطق اﻻنتشار Distribution Mediterranean basin. Northern, eastern and southern Africa, Canary Islands, India, western Asia, and apparently wherever olives (the genus Olea) occur in the Eastern Hemisphere. In the Western Hemisphere, it is currently restricted to California in the United States, and Baja California in Mexico (Rice 2000). The olive fruit fly is generally a serious pest of cultivated olives throughout its range. It was detected in California in October, 1998 in the Los Angeles area, and spread to the rest of California (Zalom, Van Steenwyk, Burrack and Johnson 2009). Distribution Maps Eppo 2015 وصف الحشرة Description Immature stages are similar in appearance to those of other tephritid fruit flies, especially Bactrocera spp. -
Microlepidoptera.Hu Redigit: Fazekas Imre
Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ………………………. -
REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ ....................................................................... -
The Potential Ecological Impact of Ash Dieback in the UK
JNCC Report No. 483 The potential ecological impact of ash dieback in the UK Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. January 2014 © JNCC, Peterborough 2014 ISSN 0963 8091 For further information please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY www.jncc.defra.gov.uk This report should be cited as: Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. 2014. The potential ecological impact of ash dieback in the UK. JNCC Report No. 483 Acknowledgements: We thank Keith Kirby for his valuable comments on vegetation change associated with ash dieback. For assistance, advice and comments on the invertebrate species involved in this review we would like to thank Richard Askew, John Badmin, Tristan Bantock, Joseph Botting, Sally Lucker, Chris Malumphy, Bernard Nau, Colin Plant, Mark Shaw, Alan Stewart and Alan Stubbs. -
Insects Associated with Fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with Special Reference to the Tephritidae (Diptera)
D. Elmo Hardy Memorial Volume. Contributions to the Systematics 135 and Evolution of Diptera. Edited by N.L. Evenhuis & K.Y. Kaneshiro. Bishop Museum Bulletin in Entomology 12: 135–164 (2004). Insects Associated with Fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with Special Reference to the Tephritidae (Diptera) ROBERT S. COPELAND Department of Entomology, Texas A&M University, College Station, Texas 77843 USA, and International Centre of Insect Physiology and Ecology, Box 30772, Nairobi, Kenya; email: [email protected] IAN M. WHITE Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; e-mail: [email protected] MILLICENT OKUMU, PERIS MACHERA International Centre of Insect Physiology and Ecology, Box 30772, Nairobi, Kenya. ROBERT A. WHARTON Department of Entomology, Texas A&M University, College Station, Texas 77843 USA; e-mail: [email protected] Abstract Collections of fruits from indigenous species of Oleaceae were made in Kenya between 1999 and 2003. Members of the four Kenyan genera were sampled in coastal and highland forest habitats, and at altitudes from sea level to 2979 m. Schrebera alata, whose fruit is a woody capsule, produced Lepidoptera only, as did the fleshy fruits of Jasminum species. Tephritid fruit flies were reared only from fruits of the oleaceous subtribe Oleinae, including Olea and Chionanthus. Four tephritid species were reared from Olea. The olive fly, Bactrocera oleae, was found exclusively in fruits of O. europaea ssp. cuspidata, a close relative of the commercial olive, Olea europaea ssp. europaea. Olive fly was reared from 90% (n = 21) of samples of this species, on both sides of the Rift Valley and at elevations to 2801 m. -
ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera
ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera. (Under the direction of Dr. Brian M. Wiegmann.) Efforts to understand the evolutionary history of flies have been obstructed by the lack of resolution in major radiations. Diptera is a highly diverse branch on the tree of life, but this diversity accrued at an uneven pace. Some of radiations that contributed disproportionately to species diversity occurred contemporaneously, and understanding the relationships of these taxa can illuminate broad scale patterns. Relationships between some subordinate groups of taxa are notoriously difficult to untangle, and genomic data will address these problems at a new scale. This project will focus on two major radiations in Diptera: Tabanus horse flies and relatives, and acalyptrate Schizophora. Tabanus includes over one thousand species. Synthesis focused research on the group is stymied by its species richness, worldwide distribution, inconsistent diagnosis, and scale of undescribed diversity. Furthermore, the genus may be non-monophyletic with respect to more than 10 other lineages of horse flies. A groundwork phylogenetic study of worldwide Tabanus is needed to understand the evolution of this lineage and to make comprehensive taxonomic projects manageable. Data to address this question was collected from two different sources. A dataset including five genes was sequenced from ninety-four species in the Tabanus group, including nearly all genera of Tabanini and at least one species from every biogeographic region. Then a new data source from a next generation sequencing approach, Anchored Hybrid Enrichment exome capture, was used to accumulate a dataset including hundreds of genes for a subset of the taxa.