Chris Olukayode Adedire Fesn " 2·

Total Page:16

File Type:pdf, Size:1020Kb

Chris Olukayode Adedire Fesn ..,.. CHRIS OLUKAYODE ADEDIRE FESN B.Sc., M.Sc (Ilorin), Ph.D. (lfe) Professor- of Etitomology' " 2· _ place between individuals, between collectivities, or between individuals and collectivities. Intergroup as well as intragroup conflicts are perennial features of social life". In the present context, conflict may be conceptualised as competition for the same resources; notably food, water, nutrients etc - except mating partners and it is interspecific. The Bible attests to the fact that there was ecological equilibrium at the dawn of creation because God said that all the things He created were good (Genesis 1:3 I). However, a significant step in the cultural evolution of man is the development oflarge scale cu Itivation or crops or monoculture and the capacity to store the excess crops so produced. This step, ' significant as it is, also led to the creation of artificial environment for insects; thus resulting in ecological imbalances. The built-up environment, road constructions, impoundment of inland waterways and various other activities associated with human development have all created breeding sites for some insects and intermediate hosts of the causative organisms of diseases at the expense of their natural enem ies. It is apparent, therefore, that either overtly or covertly, many human activities result into conflict either with fellow humans or with other components ofhis other biotic or abiotic environment. Consequently, cdriflicts in this context may be perceived as an integral part of human existence and may not necessarily result in the destruction of human society even though they start and terminate with or without human intervention. Sandole (1993) suggested that nothing.was inherently wrong with conflict but, instead, it.is seen as a catalyst for promoting social development, higher degree social order and new awareness in cooperative living. These same observations are also true in case of man and the six-legged animals called insects. In many instances, man and insects have similar demands for food, water and nutrients from the biotic and abiotic ecosystem thus resulting into conflicts. Insect diversity and abundance have further exacerbated the situation. A case in point is the nutritional demand. Many monophagous and polyphagous insects are endowed with highly potent enzymes capable of efficiently extracting nutrients from crop plants, food items and livestock. Some of these enzymes are analogous to those in humans (Prosser 1973, Adedire, 1990a, b, 1994a). The kola nut weevil, Sophrorhinus insperatus Faust for example, has a wiele range of carbohydrases, lipases and proteinases that perform similar functions as those of the enzymes of human digestive tract (Adedire, 1990a, b, Adedire and Balogun, 1991, 1992, 1995) thus enabl ing them to extract their nutritional needs from kola nuts. 1.2 What are Insects? 1.2.1 The Taxonomic Position ofInsects: Among the invertebrates, insects are probably the most wrongfully identified and understood. This misconception arises from the fact that any invertebrate that bites or causes nuisance, jumps or crawls is often misconstrued to be an 4 insect; irrespective of whether they are mites, scorpions, centipedes or spiders. According to Ivbijaro (2003) insects have suffered a lot of condemnation and ill treatment from man who shares the same environment with them. However, to Zoologists, Entomologists or skilled eyes, insects actually belong to the Phylum Arthropoda (Stork, 1988). It is this same phylum that insects' cousins and relatives such as millipedes, centipedes, scorpions, mites and tick belong. Invertebrate species grouped together in the Phylum Arthropoda actually have some common characters; such as the possession of exoskeleton with chitin as its major constituent, a bilateral symmetry, a ventral nerve cord, a brain and jointed appendages modified for feeding. The word Arthropoda was coined from, two Greek words "Arthros" which means "joint" and "poda" which implies "legs" thus referring to the animals with "jointed legs" or "jointed appendages". Insects however differ from their close relatives with who they are often confused as virtually all insects (except some, such as fleas and lice) have well defined three body regions (tagmata): namely the head, thorax and abdomen (Figure 1). All mem bers of the Class Insecta (hexapoda) have three pairs of thoracic legs. The insect head bears a pair of antennae used for chemoreception (smell) or mechanoreception (tactile or hearing). The head also bears a pair of compound eyes called omatidia and some simple eyes called ocelli. The thorax bears two pairs of wings which may be modified, reduced or completely absent in some groups of species. The absence of wings among members of the Sub-Class Apterygota is a primitive characteristic whereas the absence of wings in pterygotes is a secondary character. Apart from members of the order Protura, Diplura,' Collembola and Thysanura which are primarily apterous, examples of modern day wingless insects are Termite (Macrotermes spp), ants (Oecophylla spp), Bed-bug iCimexspp) and lice (Pediculus spp). Insects are generally small-sized and their mouthparts are greatly modified for various types offeeding such as biting and chewing, piercing ancl sucking, lapping or sapping etc. They exhibit incomplete or complete metamorphosis while they use tracheal system for respiration. 5 aiofU:-ii.i/Hit-.a "'Q~i'~~i.. p'lt~e ""'~_ l.trAO .a.iJ:t:w..Mi __ 'C4lJIIj" '-._-- '''''-'«Q .....,•....... ,"OKAX l , "I ••. tk!lili( Ao.~)O<M a!!f"'4 ,...•. ~ih~lt4:. Figure 1: External Morphology of an adult insect species of its .genus-and.has about 4 billion individuals, insects constitute about three-quarters of the total described animal species (Figure 2). Thousands of insect species are believed yet to be described while the insect species already described exceeds the sum total of all other known animal species. Pyle et. al. (1981) reported that about one million insect species have been fully described and this number exceeds 70% of all described animal species (Figure 2). The hyperdiversity of arthropods, and by extension, the insects, is succinctly illustrated by Stork (1988) when he estimated that the number of arthropods to range between 10 and 80 million. In Nigeria, 22,090 animal species have been identified and insects account for 20,000 species or 90.54% (lvbijaro, 2003). The adaptive radiation of insects is quite remarkable when the number of described insect species is compared with other life forms (Table 1). Insects have great adaptability and have radiated into many terrestrial and aquatic habitats. They have an average density of24 million/ha in soil and 25,000 in air compared with human density ofO.14/ha on dry land. 6 Table]: Relative number of described species of Living Organisms. Group No. of described species Bacteria 5 x 10'" Insects 673,500 Plant and Algal species 3000,000 400,000 Other Animal phyla 228.500 Other Arthropods 136,500 Fungi 70,000 Viruses 2,000 ""'Of Pv1~ fth",OII',""I~ 611,000 '.500 Arth.opOd~ 810,000 "ioNUiCJ 70,000 Ann.lld. '.000 Figure 2: Relative sizes and number of animal species described for major phyla in the Animal kingdom 1.3 Beneficial relationships of insect with man The relationship between insects and man is not always adversorial. Many insects and their arthropod relatives exhibit relationships that are directly or indirectly beneficial to human beings, notable among which are: pollinators of crops and horticultural plants; some are thrash burners or scavengers thereby contributing to decay of organic matter and recycling of soil nutrients. Some insects and mites attack other insects thereby acting as biological control agents of injurious or pestiferous species. Insects are eaten as food and some of them produce useful products such as honey, silk and wax. Some insects and their products are useful in science and medicine. Insects have aesthetic value hence their importance in decorative art and culture. 7 1.3.1 Insect as human food It is estimated that over 1000 insect species belonging to about 370 genera are eaten all over the world; especially in Africa, Asia, Australia and Latin America (Defoliator, 1989; Gullan and Cranston, 2005; Van Huis, 2003). A list of some edible insect species is presented in Table 2. Some of these commonly consumed insects include grasshoppers, palm weevils, termites, crickets, locusts, moth larvae, rhinoceros beetles, Oryctes spp., bee brood etc. The act of eating insects or entomophagy is, not popular in Western Societies possibly for cultural considerations rather than any scientific or rational reasoning. This statement is true given the fact that crustaceans and molluscs are preferred culinary items in these societies. For about two decades, scientists and gourmet experts in the United States have made significant improvements in the preparation of food recipes from insects. In fact, fried grasshoppers, and grubs are now being promoted for cocktails, home use and during insect festiva Is. However, it is fairly well documented that generally insects are veritable sources of high dietary protein, energy, vitamins and minerals nutrients. In many parts of the world, an estimated 5-40% of human protein requirements are sourced from insects and are consumed in various forms. They may be eaten raw, roasted, dried (ir added to other foods or soups. Some insects are eaten during collection. A case in'point is termite: where both reproductives and the queen termite are eaten raw (Ajayi and Adedire,2007a). However
Recommended publications
  • Information Sheet Flightless Carcass Beetles
    Information Sheet Flightless Carcass Beetles (Trogidae) Carcass beetles or ‘trogids’ are usually associated with carrion and are also known as ‘hide beetles’. They are part of a large suite of insects which assist in breaking down and recycling materials from dead animals. Usually they are attracted to dry carcasses where both adults and larvae feed on dried skin and muscle, fur, or feathers. Australia is home to 53 known species in a single genus, Omorgus (formerly included in the genus Trox). Not all of these species, though, exhibit the usual behaviours. Trogids belong to the scarab­like group of beetles (superfamily Scarabaeoidea) and, like other scarabaeoids, have characteristically short antennae with the terminal segments expanded to form a club. They range from about 10 mm to over 30 mm in length and their bodies are ornamented with ridges, tubercles and bristles. Larvae are white ‘curl­grubs’ similar to those of other scarabaeoid beetles and live in burrows in the soil beneath carcasses. Most people would consider these to be unattractive insects given where they live and feed, the fact that they are generally dull black, discoloured with soil or filth and, when handled, tend to exude a brown liquid from the mouth. However, not all trogids feed under dead animals: some have been found feeding and/or breeding in vertebrate burrows and nests, on the castings of predatory birds, in bat guano and on dead insects. Then there are the flightless trogids ­ relatively large species having the fore wings (elytra) fused and no functional hind wings. Nine of the largest Australian Omorgus species including O.
    [Show full text]
  • Taxonomic Status of the Genera Sorosporella and Syngliocladium Associated with Grasshoppers and Locusts (Orthoptera: Acridoidea) in Africa
    Mycol. Res. 106 (6): 737–744 (June 2002). # The British Mycological Society 737 DOI: 10.1017\S0953756202006056 Printed in the United Kingdom. Taxonomic status of the genera Sorosporella and Syngliocladium associated with grasshoppers and locusts (Orthoptera: Acridoidea) in Africa Harry C. EVANS* and Paresh A. SHAH† CABI Bioscience UK Centre, Silwood Park, Ascot, Berks. SL5 7TA, UK. E-mail: h.evans!cabi.org Received 2 September 2001; accepted 28 April 2002. The occurrence of disease outbreaks associated with the genus Sorosporella on grasshoppers and locusts (Orthoptera: Acridoidea) in Africa is reported. Infected hosts, representing ten genera within five acridoid subfamilies, are characterized by red, thick-walled chlamydospores which completely fill the cadaver. On selective media, the chlamydospores, up to seven-years-old, germinated to produce a Syngliocladium anamorph which is considered to be undescribed. The new species Syngliocladium acridiorum is described and two varieties are delimited: var. acridiorum, on various grasshopper and locust genera from the Sahelian region of West Africa; and, var. madagascariensis, on the Madagascan migratory locust. The ecology of these insect-fungal associations is discussed. Sorosporella is treated as a synonym of Syngliocladium. INTRODUCTION synanamorph, Syngliocladium Petch. Subsequently, Hodge, Humber & Wozniak (1998) described two Between 1990 and 1993, surveys for mycopathogens of Syngliocladium species from the USA and emended the orthopteran pests were conducted in Africa and Asia as generic diagnosis, which also included Sorosporella as a part of a multinational, collaborative project for the chlamydosporic synanamorph. biological control of grasshoppers and locusts of the Based on these recent developments, the taxonomic family Acridoidea or Acrididae (Kooyman & Shah status of the collections on African locusts and 1992).
    [Show full text]
  • Traditional Knowledge Regarding Edible Insects in Burkina Faso
    Séré et al. Journal of Ethnobiology and Ethnomedicine (2018) 14:59 https://doi.org/10.1186/s13002-018-0258-z RESEARCH Open Access Traditional knowledge regarding edible insects in Burkina Faso Aminata Séré1, Adjima Bougma1, Judicaël Thomas Ouilly1, Mamadou Traoré2, Hassane Sangaré1, Anne Mette Lykke3, Amadé Ouédraogo4, Olivier Gnankiné5 and Imaël Henri Nestor Bassolé1* Abstract Background: Insects play an important role as a diet supplement in Burkina Faso, but the preferred insect species vary according to the phytogeographical zone, ethnic groups, and gender. The present study aims at documenting indigenous knowledge on edible insects in Burkina Faso. Methods: A structured ethno-sociological survey was conducted with 360 informants in nine villages located in two phytogeographical zones of Burkina Faso. Identification of the insects was done according to the classification of Scholtz. Chi-square tests and principal component analysis were performed to test for significant differences in edible insect species preferences among phytogeographical zones, villages, ethnic groups, and gender. Results: Edible insects were available at different times of the year. They were collected by hand picking, digging in the soil, and luring them into water traps. The edible insects collected were consumed fried, roasted, or grilled. All species were indifferently consumed by children, women, and men without regard to their ages. A total of seven edible insect species belonging to five orders were cited in the Sudanian zone of Burkina Faso. Macrotermes subhyalinus (Rambur), Cirina butyrospermi (Vuillet, 1911), Kraussaria angulifera (Krauss, 1877), Gryllus campestris (Linnaeus, 1758), and Carbula marginella (Thunberg) (35.66–8.47% of the citations) were most cited whereas Rhynchophorus phoenicis (Fabricius, 1801) and Oryctes sp.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Millet Research Reports
    Millet Research Reports covered 47 towns and villages in 23 Local Government Areas of Kaduna, Plateau, and Nassarawa States, that Germplasm represent the dauro-producing areas of Nigeria. Twenty- three farmers were interviewed. The collection was made by traveling along the highways and other motorable Dauro Millet Germplasm Collection roads, stopping every 20 km to examine dauro millet in Nigeria farms. The coarse grid sampling method was followed, and samples were selected from farmers' fields. The I I Angarawai 1, M C Dike 2, T O Ajiboye 3, and objective of sampling was to collect at least one panicle of O Ajayi 3 (1. Lake Chad Research Institute, PMB every variant occurring in the target population (individual 1293, Maiduguri, Nigeria; 2. Institute for Agri- fields) with a frequency greater than 0.05, as suggested by cultural Research, Ahmadu Bello University, PMB Marshall and Brown (1975). Of the 34 samples collected, 1044, Zaria, Nigeria: 3. International Crops Research 25 were dauro and 9 were maiwa (Table 1). Samples were Institute for the Semi-Arid Tropics, PMB 3491, listed in the sequence in which they were collected and Kano, Nigeria) prefixed DM97 ( dauro millet collected in 1997) and MM97 (maiwa millet collected in 1997). Introduction Differences between dauro and maiwa Three types of pearl millet [ Pennisetum glaucum (L.) R. Pearl millet types in Nigeria differ so much that Stapf and Br.] are cultivated on about 5 million hectares in Nigeria Hubbard (1934) classified short-duration millet as (FAO 1992). Gero, the photoperiod-insensitive early- Pennisetum typhoides (Stapf and Hubb.) and long-duration maturing type, is grown in the relatively dry (Sudano- millet as P.
    [Show full text]
  • Ent18 2 117 121 (Kravchenko Et Al).Pmd
    Russian Entomol. J. 18(2): 117121 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2009 The Eariadinae and Chloephorinae (Lepidoptera: Noctuoidea, Nolidae) of Israel: distribution, phenology and ecology Eariadinae è Chloephorinae (Lepidoptera: Noctuoidea, Nolidae) Èçðàèëÿ: ðàñïðåäåëåíèå, ôåíîëîãèÿ è ýêîëîãèÿ V.D. Kravchenko1, Th. Witt2, W. Speidel2, J. Mooser3, A. Junnila4 & G.C. Müller4 Â.Ä. Êðàâ÷åíêî1,Ò. Âèòò2, Â. Øïàéäåëü2, Äæ. Ìîçåð3, Ý. Äæàííèëà4 , Ã.Ê. Ìþëëåð4 1 Department of Zoology, Tel Aviv University, Tel Aviv, Israel. 2 Museum Witt, Tengstr. 33, D-80796 Munich, Germany. 3 Seilerbruecklstr. 23, D-85354 Freising, Germany. 4 Department of Parasitology, Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University Hadassah- Medical School, Jerusalem, Israel. KEY WORDS: Lepidoptera, Israel, Levant, Nolidae, Eariadinae, Chloephorinae, phenology, ecology, host- plants. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Lepidoptera, Èçðàèëü, Ëåâàíò, Nolidae, Eariadinae, Chloephorinae, ôåíîëîãèÿ, ýêîëîãèÿ, êîðìîâûå ðàñòåíèÿ. ABSTRACT: The distribution, flight period and âèä, Microxestis wutzdorffi (Püngeler, 1907), ñîáðàííûé abundance of six Israeli Eariadinae and eight Chloe- 80 ëåò íàçàä, íå îáíàðóæåí çà âðåìÿ ðàáîòû phorinae species (Noctuoidea, Nolidae) are summa- Èçðàèëüñêî-Ãåðìàíñêîãî Ïðîåêòà ïî èçó÷åíèþ Lepi- rized. Seven species are new records for Israel: Earias doptera. Äëÿ âñåõ âèäîâ ïðèâîäÿòñÿ äàííûå ïî biplaga Walker, 1866, Earias cupreoviridis (Walker, ÷èñëåííîñòè, ðàñïðåäåëåíèþ, ôåíîëîãèè è ýêîëîãèè. 1862), Acryophora dentula (Lederer, 1870), Bryophilop- Äëÿ ïÿòè âèäîâ âïåðâûå óêàçàíû êîðìîâûå ðàñòåíèÿ. sis roederi (Standfuss, 1892), Nycteola revayana (Sco- poli, 1772), Nycteola columbana (Turner, 1925) and Nycteola asiatica (Krulikovsky, 1904). Three species, Introduction E. biplaga E. cupreoviridis and N. revayana, are re- corded for the first time from the Levante. Only one The Nolidae is a family that has changed in its species, Microxestis wutzdorffi (Püngeler, 1907), col- coverage several times during the past.
    [Show full text]
  • Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United Statespheylan
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2020 Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United StatesPheylan Pheylan A. Anderson University of Minnesota, St. Paul Daniela T. Pezzini University of Minnesota, St. Paul Nádia M. Bueno University of Minnesota, St. Paul Christina D. DiFonzo Michigan State University, East Lansing Deborah L. Deborah University of Missouri-Columbia, Columbia See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Anderson, Pheylan A.; Pezzini, Daniela T.; Bueno, Nádia M.; DiFonzo, Christina D.; Deborah, Deborah L.; Hunt, Thomas E.; Knodel, Janet J.; Krupke, Christian H.; McCornack, Brian P.; Philips, Christopher R.; Varenhorst, Adam J.; Wright, Robert J.; and Koch, Robert L., "Parasitism of Adult Pentatomidae by Tachinidae in Soybean in the North Central Region of the United StatesPheylan" (2020). Faculty Publications: Department of Entomology. 862. https://digitalcommons.unl.edu/entomologyfacpub/862 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Pheylan A. Anderson, Daniela T. Pezzini, Nádia
    [Show full text]
  • 20 Pest Management in Organic Cacao
    20 Pest Management in Organic Cacao Régis Babin* International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya Introduction Americas produced around 14% of total world production of cocoa (FAOSTAT, 2014). General information on cacao Cacao crop expansion in Africa and Asia came with the emergence of major pests Cacao, Theobroma cacao, is a small tree and diseases, which have adapted to the from the family Malvaceae, and originated crop from their local host plants. The most in different forest areas of South and Central infamous examples are the cocoa mirids America (Wood, 1985). During the 20th cen- Sahlbergella singularis Hagl. and Distantiel- tury, the cacao-growing belt spread consid- la theobroma Dist. (Hemiptera: Miridae), and erably over tropical areas of America, Africa the black pod disease due to Phytophthora and Asia, and is around 10 million ha today palmivora Butler and Phytophthora mega- (FAOSTAT, 2014). Cocoa beans are pro- karya, which became major threats for West duced for butter and powder that are used African-producing countries in the 1960s mainly in chocolate manufacture. In 2014, and 1970s, respectively (Entwistle, 1985; chocolate confectionery produced revenues Lass, 1985). In Latin America, witches’ of around US$120 bn, and these are ex- broom disease due to the basidiomycete fun- pected to grow with the developing markets gus Moniliophthora perniciosa highly im- in countries with rising middle classes pacted production of cocoa in Brazil in the (Hawkins and Chen, 2014). At the same time, 1990s (Meinhardt et al., 2008), while the cocoa world production rose constantly for frosty pod rot, due to Moniliophthora roreri, decades and reached 5 million t in 2012 that is widely spread in Latin America, cur- (FAOSTAT, 2014).
    [Show full text]