International Symposium on Western Redcedar and Yellow-Cedar

Total Page:16

File Type:pdf, Size:1020Kb

International Symposium on Western Redcedar and Yellow-Cedar United States Department of Agriculture A Tale of Two Cedars: Forest Service Pacific Northwest International Symposium Research Station General Technical on Western Redcedar Report PNW-GTR-828 October 2010 and Yellow-Cedar _____________________________ U.S. Department of Agriculture Pacific Northwest Research Station 333 S.W. First Avenue P.O. Box 3890 Portland, OR 97208-3890 Technical Coordinator Constance A. Harrington, research forester, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3625 93rd Ave. SW, Olympia, WA 98512- 9193 Credits Cover photography by Constance A. Harrington and Joseph M. Kraft, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3625 93rd Ave. SW, Olympia, WA 98512-9193. Artwork on inside title page and section dividers by Jodie Krakowski, BC Ministry of Forests and Range, Research, Knowledge and Innovation Management Branch, Cowichan Lake Research Station, Box 225, Mesachie Lake, B.C. V0R 2N0 Papers were provided by the authors in camera-ready form for printing. Authors are responsible for the content and accuracy. Opinions expressed may not necessarily reflect the position of the U.S. Department of Agriculture. The use of trade names or firm names is for information only and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Pesticide Precautionary Statement This publication reports on operations that may involve pesticides. It does not contain recommendations for their use, nor does it imply that the uses have been registered. All uses of pesticides must be registered by appropriate provincial, state or federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife – if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. A Tale of Two Cedars International Symposium on Western Redcedar and Yellow-cedar U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon General Technical Report PNW-GTR-828 October 2010 ABSTRACT Harrington, Constance, A., tech. coord. 2010. A tale of two cedars – International symposium on western redcedar and yellow-cedar. Gen. Tech. Rep. PNW-GTR-828. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 177 p. From May 24-28, 2010, an international symposium on western redcedar (Thuja plicata) and yellow- cedar (Callitropsis nootkatensis [syn. Chamaecyparis nootkatensis]) was held at the University of Victoria on Vancouver Island in British Columbia, Canada. The symposium was entitled “A Tale of Two Cedars” and brought together local, regional, national, and international experts to present cultural, biological, management and economic information on the two species. Although some papers or posters focused on just one of the cedars, many of the presenters covered both species and discussed the similarities and differences between them. This proceedings includes abstracts or short papers from all of the formal presentations or posters presented at the symposium. KEYWORDS: Western redcedar, Thuja plicata, yellow-cedar, Callitropsis nootkatensis, Chamaecyparis nootkatensis, Alaska yellow-cedar, cultural use, ecology, soils, nutrient cycling, physiology, forest health, climate, genetics, wood properties, silviculture and forest management. PREFACE From May 24-28, 2010, an international symposium on western redcedar and yellow-cedar was held at the University of Victoria, on Vancouver Island, British Columbia, Canada. The symposium was sponsored by the Centre for Forest Biology, University of Victoria; British Columbia Ministry of Forests and Range; and U.S. Forest Service, Pacific Northwest Research Station. The Organizing Committee consisted of: Paul Hennon, U.S. Forest Service, Pacific Northwest Research Station, Juneau, AK; John Russell, British Columbia Ministry of Forests and Range, Research, Knowledge and Innovation Management Branch, Cowichan Lake Research Station, Mesachie Lake, BC; Constance Harrington, U.S. Forest Service, Pacific Northwest Research Station, Olympia, WA; Barbara Hawkins, Centre for Forest Biology, University of Victoria, Victoria, BC; Diane Douglas, British Columbia Ministry of Forests and Range, Tree Improvement Branch, Victoria, BC; and Jodie Krakowski, British Columbia Ministry of Forests and Range, Research, Knowledge and Innovation Management Branch, Cowichan Lake Research Station, Mesachie Lake, BC. We also acknowledge the support and helpful suggestions of Charles Peterson, U.S. Forest Service, Pacific Northwest Research Station, Portland, OR, in the initial planning stages for the meeting. Canadian and U.S. scientists and managers have accumulated substantial knowledge and experience with western redcedar and yellow-cedar but there have been few opportunities to exchange this information. The primary goal of the meeting was to bring together experts in a broad range of fields to share information and experience and, where possible, to synthesize knowledge on these two species. Both of these cedars are culturally, economically, and biologically important, but they have been relatively poorly studied compared to other species of comparable importance. In addition, by addressing only two tree species, we hoped to delve deeply into various scientific disciplines— ethnobotany, ecology, soil science, physiology, entomology and pathology, climate, genetics, wood science, and silviculture. Many of the individual presentations in the sessions at the symposium addressed both cedar species and were multidisciplinary. We posed two related questions several times during the symposium: how are these two cedars similar, and how are they different? The 4-day meeting began with 4 keynote speakers to set the stage for the rest of the meeting -- one each on cultural roles of the cedars, nomenclature and relatedness within the Cupressaceae, and two on wood properties and market opportunities. Dr. Nancy Turner shared her understanding of the traditional knowledge and use of cedars by First Nations people. Many First Nations peoples living in western North America have access to one or both of the cedars. They recognized that each cedar has unique properties for various cultural and daily necessities of life, and they used them accordingly. Dr. Damon Little covered the evolutionary history, taxonomy, and nomenclature of yellow-cedar and western redcedar and outlined key taxonomic changes in the Cupressaceae. The two cedars may look similar, but their descendants emerged from different branches of an ancient plant family long ago and are actually only very distantly related. The taxonomic classification of western redcedar is stable, but not so for yellow-cedar: it is in considerable flux. Drs. Chris Gaston and Ivan Eastin rounded out the keynote presentations by discussing the wood properties and commercial value of the two cedars and their different domestic and international markets. Both cedars are consistently the most commercially valued wood where they grow, but their woods have distinct properties, and very different North American and Asian market niches. Our keynote speaker session was followed by others which were organized around several broad themes. The ecological sessions built a foundation of where on landscapes the two cedars could be conserved or actively managed. Information on habitat preferences, soils and nutrient cycling, physiology, forest health, genetics, and wood properties gave guidance on where cedars are best- adapted, both currently and in the future with a changing climate. This guidance came in the form of broad-scale patterns, such as physiological adaptation, climate envelopes, and the movement of populations to help ensure current and future adaptability. Speakers also addressed fine-scale features such as physiological plasticity in response to local climate, and ecological adaptation to wet soils through calcium and nitrogen uptake. Durable wood products from young-growth forests through silvicultural and genetic management are vital to the economic stability of our regions. Scientific information from related sessions outlined the progress that has been made to date as well as future research initiatives. These talks set the stage for the Friday management session which provided examples through field testing and operational experience of how cedars could be, and are being, managed with different silvicultural strategies and examined growth rates of these species with and without management. Our field trips reinforced many of the same themes. We experienced the beauty of old-growth forests and discussed the role of these cedars in forest management in areas within driving distance of Victoria. Population adaptation of the two cedars was witnessed first-hand, as were operational silvicultural successes and both ecologically rich and stressful environments. We thank: (1) Western Forest Products for providing staff to talk about their practices and for allowing access to multiple sites on a field trip where participants could view research installations, operational plantations, and natural stands of the species, and (2) Capital Regional District Watershed for allowing access to an exceptional old-growth stand. The symposium included a poster session (abstracts or mini papers are included from that session
Recommended publications
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • Wildlife Information for Commercial Backcountry Recreation Opportunities in the North Central Monashee Mountains
    WILDLIFE INFORMATION FOR COMMERCIAL BACKCOUNTRY RECREATION OPPORTUNITIES IN THE NORTH CENTRAL MONASHEE MOUNTAINS 1.0 INTRODUCTION Amongst the wide variety of wildlife residing in the North Central Monashee Mountains are rare, threatened or endangered species as well as species of special management emphasis. Color code status has been assigned to species to indicate their vulnerability. Red listed: Includes any indigenous species or subspecies (taxa) considered to be Extirpated, Endangered, or Threatened in British Columbia. Blue listed: Includes any indigenous species or subspecies (taxa) considered to be Vulnerable in British Columbia. Special Management: Includes species which are not red or blue listed but are particularly sensitive to a variety of disturbances and require additional management emphasis. Backcountry recreation has the potential to impact wildlife and wildlife habitat, depending on the location, time of year, intensity, frequency and type of backcountry recreation activity. However, with thorough planning, impacts to wildlife from commercial backcountry recreation can be mitigated. 2.0 COMMERCIAL BACKCOUNTRY RECREATION GUIDELINES During 2000, the Ministry of Environment recognized the need for province-wide commercial backcountry recreation guidelines to address wildlife concerns and allow ministry staff to be provincially consistent in their evaluation of backcountry recreation proposals. The draft provincial guidelines are currently under review, and interim guidelines entitled Expanded Kootenay Region Interim Wildlife Guidelines for Commercial Backcountry Recreation in British Columbia (http://www.elp.gov.bc.ca/wld/comrec/crecintro.html) have been established. The guidelines will assist commercial backcountry operators and government agency staff in protecting wildlife and wildlife habitat while sustaining ecotourism and adventure travel in British Columbia.
    [Show full text]
  • Dying Cedar Hedges —What Is the Cause?
    Points covered in this factsheet Symptoms Planting problems Physiological effects Environmental, Soil and Climate factors Insect, Disease and Vertebrate agents Dying Cedar Hedges —What Is The Cause? Attractive and normally trouble free, cedar trees can be great additions to the landscape. Dieback of cedar hedging in the landscape is a common prob- lem. In most cases, it is not possible to pinpoint one single cause. Death is usually the result of a combination of envi- ronmental stresses, soil factors and problems originating at planting. Disease, insect or animal injury is a less frequent cause. Identifying The Host Certain species of cedar are susceptible to certain problems, so identifying the host plant can help to identify the cause and whether a symptom is an issue of concern or is normal for that plant. The most common columnar hedging cedars are Thuja plicata (Western Red Cedar - native to the West Coast) and Thuja occidentalis (American Arborvitae or Eastern White ICULTURE, PLANT HEALTH UNIT Cedar). Both species are often called arborvitae. Common varieties of Western Red ce- dar are ‘Emerald Giant’, ‘Excelsa’ and Atrovirens’. ‘Smaragd’ and ‘Pyramidalis’ are com- mon varieties of Eastern White cedar hedging. Species of Cupressus (Cypress), Chamaecyparis nootkatensis (Yellow Cedar or False Cypress) and Chamaecyparis law- soniana (Port Orford Cedar or lawsom Cypress) are also used in hedging. Symptoms The pattern of symptom development/distribution can provide a clue to whether the prob- lem is biotic (infectious) or abiotic (non-infectious). Trees often die out in a group, in one section of the hedge, or at random throughout the hedge.
    [Show full text]
  • Uranium-Lead Age Constraints and Structural Analysis
    Uranium-Lead Age Constraints and Structural Analysis for the Ruddock Creek Zinc-Lead Deposit: Insight into the Tectonic Evolution of the Neoproterozoic Metalliferous Windermere Supergroup, Northern Monashee Mountains, Southern British Columbia (NTS 082M) L.M. Theny, Simon Fraser University, Burnaby, BC, [email protected] H.D. Gibson, Simon Fraser University, Burnaby, BC J.L. Crowley, Boise State University, Boise, ID Theny, L.M., Gibson, H.D. and Crowley, J.L. (2015): Uranium-lead age constraints and structural analysis for the Ruddock Creek zinc- lead deposit: insight into the tectonic evolution of the Neoproterozoic metalliferous Windermere Supergroup, northern Monashee Moun- tains, southern British Columbia (NTS 082M); in Geoscience BC Summary of Activities 2014, Geoscience BC, Report 2015-1, p. 151– 164. Introduction syenite gneiss and syenite gneiss occur as concordant lay- ers within the calcsilicate gneiss. Pegmatite and granitoid The Ruddock Creek property (Figure 1) is situated within intrusions account for approximately 50% of the overall the Windermere Supergroup of the northern Monashee outcrop (Fyles, 1970; Scammell, 1993; Höy, 2001). The Mountains of British Columbia. Structurally, the Ruddock metasedimentary rocks are thought to belong to the Creek property is interpreted to reside within the base of the Windermere Supergroup (Scammell, 1993), which is an Selkirk allochthon, in the immediate hanging wall of the important stratigraphic succession in the North American Monashee décollement, a crustal-scale, thrust-sense duc- Cordillera interpreted to have been originally deposited tile shear zone. Crustal thickening associated with poly- along the rifted western margin of Laurentia during Neo- phase deformation involved at least three episodes of proterozoic time (Gabrielse, 1972; Stewart, 1972, 1976; superposed folding of rocks in the region and two prograde Burchfield and Davis, 1975; Stewart and Suczek, 1977; metamorphic events (Fyles, 1970; Scammell and Brown, Monger and Price, 1979; Eisbacher, 1981; Scammell and 1990; Scammell, 1993; Höy, 2001).
    [Show full text]
  • Western Red Cedar Report
    Forintek Canada Corp. Western Division 2665 East Mall Vancouver, BC V6T 1W5 Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins by Jean Clark Bob Daniels Paul Morris Mycological Technologist Wood Chemistry Analyst Group Leader Durability and Protection Durability and Protection Durability and Protection Prepared for March 2004 Recipient Agreement Number: R04-013 Research Program Date: March 2004 C. R. Daniels Janet Ingram Jean Cook Acting Project Leader Reviewed Department Manager Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins Confidential Summary Western red-cedar (WRC, Thuja plicata Donn ex D. Don) wood was extracted sequentially with six solvents using two extraction methods. The extracts were prepared for subsequent bioassay and analysed by high performance liquid chromatography for known bioactive compound concentrations. To focus identification of the extractives on those with bioactive properties, it was necessary to develop a micro-bioassay that would allow the biological activity of the unknown compounds present to be determined using minute quantities of each extracted constituent. The initial proposed technique utilised the loss of birefringence that occurs when decay fungi disrupt the crystalline cellulose structure as wood decays. Microtome sections of perishable sapwood were treated with microgram amounts of T. plicata heartwood compounds prior to exposure to decay fungi. The efficacy of the applied extract was then to be measured relative to the birefringence loss in untreated pine sapwood. Validation of the technique required standardisation of a number of variables. Over 600 thin sections of ponderosa pine sapwood were cut and exposed to three different fungi, plus non-infected controls, under varying conditions of section thickness and orientation, media and growth conditions, viz, on grids or sterile microscope slides, with and without cover-slips, and with and without supplemental nitrogen, for six different incubation periods.
    [Show full text]
  • UNIVERSITY of CALGARY Estimating Extreme Snow
    UNIVERSITY OF CALGARY Estimating Extreme Snow Avalanche Runout for the Columbia Mountains and Fernie Area of British Columbia, Canada by: Katherine S. Johnston A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CIVIL ENGINEERING CALGARY, ALBERTA AUGUST, 2011 ©Katherine S. Johnston 2011 ABSTRACT Extreme snow avalanche runout is typically estimated using a combination of historical and vegetation records as well as statistical and dynamic models. The two classes of statistical models (α – β and runout ratio) are based on estimating runout distance past the β-point, which is generally defined as the point where the avalanche slope incline first decreases to 10°. The parameters for these models vary from mountain range to mountain range. In Canada, α – β and runout ratio parameters have been published for the Rocky and Purcell Mountains and for the British Columbia Coastal mountains. Despite active development, no suitable tall avalanche path model parameters have been published for the Columbia Mountains or for the Lizard Range area around Fernie, BC. Using a dataset of 70 avalanche paths, statistical model parameters have been derived for these regions. In addition, the correlation between extreme and average snowfall values and avalanche runout is explored. iii ACKNOWLEDGEMENTS Thank you to Bruce Jamieson for giving me the opportunity to work on this project, and for coordinating the financial support for this project. His thoughtful advice, numerous reviews, and inspirational leadership have helped make this a fantastic experience. My thanks to Alan Jones for providing numerous hours of guidance, mentoring, and thoughtful discussion throughout this project, and for facilitating data acquisition from outside sources.
    [Show full text]
  • Guide Alaska Trees
    x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary .
    [Show full text]
  • The Evolution of Inbreeding in Western Redcedar (Thuja Plicata: Cupressaceae)
    THE EVOLUTION OF INBREEDING IN WESTERN REDCEDAR (THUJA PLICATA: CUPRESSACEAE) by LISA MARIE O'CONNELL B.A. University of Ottawa, 1993 B.Sc. Dalhousie University, 1995 M.Sc. Queen's University, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Forest Sciences) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA 2003 © Lisa Marie O'Connell, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of forfs't Sci e rt c*5 The University of British Columbia Vancouver, Canada Date April H , 2^003 DE-6 (2/88) Abstract Long-lived woody plants usually show high levels of outcrossing, inbreeding depression and genetic diversity compared to other plants. A review of the literature showed a mean oucrossing rate of 83.5 in conifers, and a positive, but weak, correlation between outcrossing and genetic diversity. Among conifers, western redcedar (Thuja plicata, Cupressaceae) has one of the highest rates of self-fertilization and lowest amount of genetic diversity, and thus offers the opportunity to study the evolution of inbreeding in a predominantly outcrossing group of plants.
    [Show full text]
  • Softwood Insect Pests
    Forest & Shade Tree Insect & Disease Conditions for Maine A Summary of the 2011 Situation Forest Health & Monitoring Division Maine Forest Service Summary Report No. 23 MAINE DEPARTMENT OF CONSERVATION March 2012 Augusta, Maine Forest Insect & Disease—Advice and Technical Assistance Maine Department of Conservation, Maine Forest Service Insect and Disease Laboratory 168 State House Station, 50 Hospital Street, Augusta, Maine 04333-0168 phone (207) 287-2431 fax (207) 287-2432 http://www.maine.gov/doc/mfs/idmhome.htm The Maine Forest Service/Forest Health and Monitoring (FH&M) Division maintains a diagnostic laboratory staffed with forest entomologists and a forest pathologist. The staff can provide practical information on a wide variety of forest and shade tree problems for Maine residents. Our technical reference library and insect collection enables the staff to accurately identify most causal agents. Our website is a portal to not only our material and notices of current forest pest issues but also provides links to other resources. A stock of information sheets and brochures is available on many of the more common insect and disease problems. We can also provide you with a variety of useful publications on topics related to forest insects and diseases. Submitting Samples - Samples brought or sent in for diagnosis should be accompanied by as much information as possible including: host plant, type of damage (i.e., canker, defoliation, wilting, wood borer, etc.), date, location, and site description along with your name, mailing address and day-time telephone number or e-mail address. Forms are available (on our Web site and on the following page) for this purpose.
    [Show full text]
  • Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus Orientalis (L.) Franco from South-Eastern Poland
    Article Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus orientalis (L.) Franco from South-Eastern Poland Agnieszka Laskowska * , Karolina Majewska, Paweł Kozakiewicz , Mariusz Mami ´nskiand Grzegorz Bryk The Institute of Wood Sciences and Furniture, 159 Nowoursynowska St., 02-776 Warsaw, Poland; [email protected] (K.M.); [email protected] (P.K.); [email protected] (M.M.); [email protected] (G.B.) * Correspondence: [email protected] Abstract: Oriental arborvitae is not fully characterized in terms of its microscopic structure or physical or mechanical properties. Moreover, there is a lot of contradictory information in the literature about oriental arborvitae, especially in terms of microscopic structure. Therefore, the sapwood (S) and heartwood (H) of Platycladus orientalis (L.) Franco from Central Europe were subjected to examinations. The presence of helical thickenings was found in earlywood tracheids (E). Latewood tracheids (L) were characterized by a similar thickness of radial and tangential walls and a similar diameter in the tangential direction in the sapwood and heartwood zones. In the case of earlywood tracheids, such a similarity was found only in the thickness of the tangential walls. The volume swelling (VS) of sapwood and heartwood after reaching maximum moisture content (MMC) was 12.8% (±0.5%) and 11.2% (±0.5%), respectively. The average velocity of ultrasonic Citation: Laskowska, A.; Majewska, waves along the fibers (υ) for a frequency of 40 kHz was about 6% lower in the heartwood zone K.; Kozakiewicz, P.; Mami´nski,M.; than in the sapwood zone. The dynamic modulus of elasticity (MOED) was about 8% lower in the Bryk, G.
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
    1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus).
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]