Hyperoxia and the Antimicrobial Susceptibility of Escherichia Coli and Pseudomonas Aeruginosa

Total Page:16

File Type:pdf, Size:1020Kb

Hyperoxia and the Antimicrobial Susceptibility of Escherichia Coli and Pseudomonas Aeruginosa ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 1989, p. 1526-1530 Vol. 33, No. 9 0066-4804/89/091526-05$02.00/0 Copyright © 1989, American Society for Microbiology Hyperoxia and the Antimicrobial Susceptibility of Escherichia coli and Pseudomonas aeruginosa K. H. MUHVICH, M. K. PARK, R. A. M. MYERS, AND L. MARZELLA* Department of Pathology, University of Maryland School of Medicine, and Division of Hyperbaric Medicine, Maryland Institute for Emergency Medical Services Systems, 10 South Pine Street, Baltimore, Maryland 21201 Received 22 December 1988/Accepted 26 June 1989 We have tested the ability of hyperoxia (98% 02-2% CO2 at 2.8 atmospheres absolute [ca. 284.6 kPa]) to enhance killing of Escherichia coli (serotype 018 or ATCC 25922) by nitrofurantoin, sulfamethoxazole, trimethoprim, gentamicin, and tobramycin. We have also looked for interactions between hyperoxia and the aminoglycosides against Pseudomonas aeruginosa ATCC 27853. Hyperoxia significantly enhanced bacterio- static activity of nitrofurantoin and trimethoprim as measured by MIC testing. The possibility exists that these effects might be due to the method required to test MICs under hyperoxic conditions rather than to the effect of hyperoxia itself. In addition, hyperoxia enhanced killing of bacteria by trimethoprim as measured by MBC testing. Hyperoxia decreased numbers of E. coli by 1.3 loglo and P. aeruginosa by 2.7 log1o in cation- supplemented Mueller-Hinton broth medium. The bacteriostatic effects of hyperoxia did not affect MICs of gentamicin or tobramycin. The lack of interaction between hyperoxia and gentamicin or tobramycin was confirmed by determining the number of viable bacteria remaining after 24 h of exposure to hyperoxia by using a pour plate method. We conclude that hyperoxia potentiates the antimicrobial activity of the reduction- oxidation-cycling antibiotic tested (nitrofurantoin) and of one of the antimetabolites tested (trimethoprim). Hyperoxia does not enhance the bactericidal effects of gentamicin and tobramycin, which require oxidative metabolism for transport into bacterial cells. Hypoxic tissues are particularly susceptible to the estab- (14). Adriamycin, for example, generates fourfold more lishment of mixed aerobic-anaerobic bacterial infections. oxygen-derived free radicals at 100% 02 compared with at These types of infections cause localized abscesses or may 21% 02 (19). spread along fascial planes to cause necrosis of muscle and Finally, hyperoxia may be lethal to bacteria (17) and skin (7). Standard treatment consists ofincision and drainage parasites (5) that lack adequate antioxidant defenses by of infected tissues and intravenous administration of antimi- increasing the generation of 02- and other toxic oxygen crobial agents (6). The rationale for using hyperoxia in these species by cellular metabolic reactions. infections is to restore normal 02 tensions in ischemic tissue, In this work, we have tested representative compounds improve oxidative cellular metabolism (13), and enhance from three classes of antimicrobial agents for interactions phagocytic killing of bacteria (12, 18). with hyperoxia in bacterial killing. The following interac- It has also been suggested that hyperoxia may be benefi- tions may exist between hyperoxia and antimicrobial agents: cial by increasing the activity of specific antimicrobial hyperoxia alone has no effect but potentiates the mode of agents. The best evidence in favor of this proposal was action of the antimicrobial agent, and hyperoxia does not presented by Gottlieb and co-workers (8, 15). In a series of potentiate the mode of action of the antimicrobial agent but in vitro and in vivo experiments, they reported synergy has an effect which is either additive or synergistic with the between sulfonamides and hyperoxia against Vibrio anguil- antimicrobial agent. Synergy exists when oxygen and an larum (15) and Moraxella (Branhamella) catarrhalis (8). antimicrobial agent combine to produce an effect which is Evidence of decreased bacteriostatic and bactericidal activ- greater than the sum of their activities taken separately. ity of aminoglycosides in anaerobic environments has been Additive effects result when the actions of oxygen and an presented by several laboratories (24, 27-29); hyperoxia can antimicrobial agent are equal to the sum of their activities restore the bactericidal activity of tobramycin (1). However, taken separately. The use of a bacterial strain which is it is not known whether hyperoxia potentiates the bacteri- sensitive to hyperoxia maximized the chances of seeing an cidal activity of aminoglycosides in comparison with normal effect, whether it was additive or synergistic. Endpoint oxygen conditions. Hyperoxia may also increase bacteri- colony counting of bacteria by a pour plate method was used cidal activity of antimicrobial agents, such as nitrofurantoin in addition to MIC and MBC testing for the detection of and nifurtimox, by increasing the generation of superoxide interactions between oxygen and antimicrobial agents. anion (027). These antimicrobial agents undergo one-elec- (Portions of this study were presented at the Annual tron reduction to free radicals (nitrofurantoin + e-- Scientific Meeting of the Undersea and Hyperbaric Medical nitrofurantoin-). In the presence of oxygen, the antimicro- Society, New Orleans, La., 1988.) bial agent free radical undergoes oxidation to generate 02 (5) (nitrofurantoin- + 02 -- nitrofurantoin + 027). The sum MATERIALS AND METHODS of these reactions is termed reduction-oxidation cycling. Chemicals. Nitrofurantoin, trimethoprim, sulfamethox- The generation of superoxide anion from the drug free azole, gentamicin, tobramycin, nitrofurazone, menadione, radical follows first-order kinetics with respect to oxygen rifamycin SV, and NADPH were purchased from Sigma Chemical Co., St. Louis, Mo. Nitrofurantoin was solubilized * Corresponding author. in dimethylsulfoxide. Sulfamethoxazole and trimethoprim 1526 VOL. 33, 1989 02 INTERACTIONS WITH ANTIMICROBIAL AGENTS AND BACTERIA 1527 were diluted in 0.1 N NaOH and 0.05 N HCI, respectively. pour plates of serial 10-fold dilutions at 24 h of incubation. Stock solutions of gentamicin and tobramycin were made in The growth control well and the wells containing concentra- 0.1 M phosphate buffer (pH 7.8) and supplemented with 25 tions of antibiotics two and four times the MIC for each ,ug of Mg2+ and 50 ,ug of Ca2+ per ml (22). The stock organism were chosen for quantification of bacterial num- solutions of antibiotics were adjusted to pH 7.4, filter steril- bers. ized (pore size, 0.20 ,um), and diluted to desired concentra- Exposure of bacterial cultures to hyperoxia. Bacterial cul- tions. tures were treated in a small (27 by 50 cm) Plexiglas Bacterial strains. A clinical isolate of Escherichia coli hyperbaric chamber (model 1224; Bethlehem Corporation, (serotype 018) was used for MIC and MBC determinations, Bethlehem, Pa.). Cultures were exposed to 98% 02-2% CO2 endpoint quantitation of bacterial numbers, and polaro- at a pressure of 2.8 ATA for 24 h. The pressure at which the graphic measurement of 02 consumption. Two reference 02 was administered (2.8 ATA) is used clinically and does strains, E. coli ATCC 25922 and Pseudomonas aeruginosa not induce toxicity in human patients. Before compression, ATCC 27853, were used for MIC and MBC determinations the chamber was thoroughly flushed with 98% 02-2% CO2. and endpoint colony counting of bacteria. The temperature in the chamber was maintained at 35 to MIC and MBC determinations. MICs were determined by 37°C by circulating heated water through coils of copper broth macrodilution testing (22). MIC testing was performed tubing located in the bottom of the chamber. in 12-well (22-mm-diameter) culture plates (Costar, Cam- Polarographic measurement of antimicrobial agent reduc- bridge, Mass.). Serial twofold antimicrobial agent dilutions tion-oxidation cycling. The ability of nitrofurantoin, ni- were made in either minimal salts-acetate broth medium trofurazone, menadione, and rifamycin SV to generate su- (MSA) as described by Brunker and Brown (3) or Mueller- peroxide anion was measured by oxygen consumption Hinton broth supplemented with 50 ,ug of Ca2' and 25 ,ug of induced in rat liver microsomes and in E. coli serotype 018. Mg2+ per ml. Each well contained 0.5 ml of antimicrobial Oxygen consumption was measured with a YSI model 53 agent diluted in specific medium, 0.4 ml of bacterial biological oxygen monitor equipped with a Clark-type elec- inoculum in the same medium, and 0.1 ml of 1 M HEPES (N- trode, standard bath stirrer assembly (Yellow Springs Instru- 2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer ment Co., Yellow Springs, Ohio), and strip chart recorder (pH 7.4). A growth control well (bacterial inoculum and (Beckman Instruments Co., Irvine, Calif.) by using a modi- HEPES buffer) and a sterility control well (growth medium fication of the polarographic assay described by Hassan (11). and HEPES buffer) were included with each MIC test. The A microsomal fraction was prepared from rat liver (2) to total volume per well was 1.0 ml, with a depth of 3 mm. This test for reduction of nitrofurantoin, nitrofurazone, menadi- depth was selected to maximize 02 penetration into the one, and rifamycin SV by cytochrome P-450 reductase. For medium as shown by Gudewicz et al. (10). The final bacterial microsomal assays, each antimicrobial agent (0.7 mM) and inoculum was approximately 5 x 105 CFU/ml and was NADPH (0.4 mM) were added to 50 mM potassium
Recommended publications
  • The Role of Nanobiosensors in Therapeutic Drug Monitoring
    Journal of Personalized Medicine Review Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring Vivian Garzón 1, Rosa-Helena Bustos 2 and Daniel G. Pinacho 2,* 1 PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia; [email protected] 2 Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +57-1-8615555 (ext. 23309) Received: 21 August 2020; Accepted: 7 September 2020; Published: 25 September 2020 Abstract: Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine. Keywords: biosensors; therapeutic drug monitoring (TDM), antibiotic; personalized medicine 1. Introduction The discovery of antibiotics (AB) ushered in a new era of progress in controlling bacterial infections in human health, agriculture, and livestock [1] However, the use of AB has been challenged due to the appearance of multi-resistant bacteria (MDR), which have increased significantly in recent years due to AB mismanagement and have become a global public health problem [2].
    [Show full text]
  • Nitrofurazone
    PATIENT INFORMATION SHEET Nitrofurazone (N-005) Your patch testing results indicate that you have a contact allergy to Nitrofurazone . It is important that you familiarize yourself with this chemical and take steps to avoid coming in contact with it. i What is Nitrofurazone and where is it found? This chemical is used as a topical bactericide for surface infections. If is also used in anti ‐infective therapy for second and third degree burns and in skin grafting. It is also an antibacterial agent for the treatment or prevention of infections in a variety of conditions involving skin, eyes, ears, nose and genitourinary tract. It is used on pyodermas, ulcers and wounds. Further research may identify additional product or industrial usages of this chemical. i What else is Nitrofurazone called? This chemical can be identified by different names, including: 2‐[(5 ‐Nitro ‐2‐furanyl)methylene]‐hydrazinecarboxamide 5‐nitro ‐2‐furfuraldehyde semicarbazone (5 ‐nitro ‐2‐furfurylideneamino)urea 5‐nitrofurfural semicarbazone 5‐Nitro ‐2‐furaldehyde Semicarbazone 6‐nitrofuraldehyde semicarbazide 5‐nitrofuraldehyde semicarbazide NF 5‐nitrofuran ‐2‐aldehyde semicarbazone NF ‐7 5‐nitro ‐2‐furancarboxaldehyde semicarbazone NFS This may not be a complete list as manufacturers introduce and delete chemicals from their product lines. THINGS YOU CAN DO TO HELP MANAGE YOUR CONTACT ALLERGY Be vigilant read the product label. Always take the time to read the ingredient listing on product packages. This should be your first step each time you purchase a product as manufacturers sometimes change product ingredients. If you have any concerns ask your pharmacist or your doctor. Test the product first.
    [Show full text]
  • Against the Plasmodium Falciparum Apicoplast
    A Systematic In Silico Search for Target Similarity Identifies Several Approved Drugs with Potential Activity against the Plasmodium falciparum Apicoplast Nadlla Alves Bispo1, Richard Culleton2, Lourival Almeida Silva1, Pedro Cravo1,3* 1 Instituto de Patologia Tropical e Sau´de Pu´blica/Universidade Federal de Goia´s/Goiaˆnia, Brazil, 2 Malaria Unit/Institute of Tropical Medicine (NEKKEN)/Nagasaki University/ Nagasaki, Japan, 3 Centro de Mala´ria e Doenc¸as Tropicais.LA/IHMT/Universidade Nova de Lisboa/Lisboa, Portugal Abstract Most of the drugs in use against Plasmodium falciparum share similar modes of action and, consequently, there is a need to identify alternative potential drug targets. Here, we focus on the apicoplast, a malarial plastid-like organelle of algal source which evolved through secondary endosymbiosis. We undertake a systematic in silico target-based identification approach for detecting drugs already approved for clinical use in humans that may be able to interfere with the P. falciparum apicoplast. The P. falciparum genome database GeneDB was used to compile a list of <600 proteins containing apicoplast signal peptides. Each of these proteins was treated as a potential drug target and its predicted sequence was used to interrogate three different freely available databases (Therapeutic Target Database, DrugBank and STITCH3.1) that provide synoptic data on drugs and their primary or putative drug targets. We were able to identify several drugs that are expected to interact with forty-seven (47) peptides predicted to be involved in the biology of the P. falciparum apicoplast. Fifteen (15) of these putative targets are predicted to have affinity to drugs that are already approved for clinical use but have never been evaluated against malaria parasites.
    [Show full text]
  • Gene-Drug Interactions and the Evolution of Antibiotic Resistance
    Gene-Drug Interactions and the Evolution of Antibiotic Resistance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Palmer, Adam Christopher. 2012. Gene-Drug Interactions and the Evolution of Antibiotic Resistance. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10436292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA © - Adam Christopher Palmer All rights reserved. Professor Roy Kishony Adam Christopher Palmer Gene-drug interactions and the evolution of antibiotic resistance Abstract The evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bacteria were grown competitively in the presence of tetracycline and its decay products. Antibiotic decay did not only remove selection for resistance, but long- lived decay products favored tetracycline sensitivity by inducing costly drug efflux pumps in the resistant strain. Selection against resistance by antibiotic-related compounds may contribute to the coexistence of drug-sensitive and resistant bacteria in nature. Chapter 2 investigates how genetic interactions can favor particular combinations of resistance-conferring mutations.
    [Show full text]
  • G6PD Deficiency Reference Guide
    Medications to Avoid Safe to take But only in normal therapeutic doses [!!!] G6PD Deficiency Reference Guide Analgesics / Antipyretics acetanilid, acetophenetidin (phenacetin), (Quoted from Ernest Beutler, M.D., “Glucose-6- amidopyrine (aminopyrine) *, Phosphate Dehydrogenase Deficiency,” in Eryth- What is G6PD Deficiency? antipyrine *, aspirin *, phenacetin, rocyte disorders: Anemias due to increased destruc- probenicid, pyramidone tion of erythrocytes with enzyme deficiencies, p. 598.) Glucose-6-phosphate dehydrogenase likely to be affected by this condition than (G6PD) deficiency is the most common are females. Genetic testing is available to Miscellaneous Acetaminophen (paracetamol, Tylenol, human enzyme deficiency; it affects an identify a deficiency in G6PD in both alpha-methyldopa, ascorbic acid *, Tralgon, hydroxyacetanilide), estimated 400 million people worldwide. males and females. dimercaprol (BAL), hydralazine, Acetophenetidin (phenacetin), G6PD deficiency is also known as It is very important to tell any doctor or mestranol, methylene blue, nalidixic acid, Acetylsalicylic acid (aspirin) *, “favism,” since G6PD deficient individu- other health professional (such as nurse or naphthalene, niridazole, Aminopyrine (Pyramidon, amidopyrine) *, als are also allergic to fava beans. pharmacist) that you have G6PD Defi- phenylhydrazine, toluidine blue, Antazoline (Antistine), G6PD deficiency is a genetic condition ciency to avoid a possible harmful reaction trinitrotoluene, urate oxidase, vitamin Antipyrine *, that is inherited in an
    [Show full text]
  • Use of Antibiotics in Ornamental Fish Aquaculture1 Roy P
    Cir 84 Use of Antibiotics in Ornamental Fish Aquaculture1 Roy P. E. Yanong2 Introduction based on their response to a protocol called gram staining. Gram-positive bacteria stain blue, and gram-negative Antibiotics are very useful additions to any fish-health bacteria stain pink. They stain differently because each manager’s toolbox, but they are only tools and not ‘magic group has a different type of outer structure known as the bullets.’ The ability of antibiotics to help eliminate a fish cell wall. This difference is important for the producer disease depends on a number of factors: 1) Does the and aquaculturist because some antibiotics work better problem actually have a bacterial component? 2) Are the against gram-positive bacteria and others work better bacteria involved sensitive to the antibiotic chosen? 3) Are against gram-negative bacteria. Most bacteria that infect the proper dosage and treatment intervals being used? 4) fish are gram-negative, including Aeromonas hydrophila, Have other contributing stresses been removed or reduced? Aeromonas salmonicida, Flavobacterium columnare (which causes columnaris), Vibrio, and Pseudomonas species. (See Antibiotics, in and of themselves, do not cure a fish. Antibi- UF/IFAS Fact Sheets FA-14 Aeromonas Infections, FA-31 otics merely control the population growth of bacteria in a Vibrio Infections of Fish and FA-11 Columnaris disease). fish long enough for its immune system to eliminate them. The major group of gram-positive bacteria that cause Before antibiotics are even considered, sources of stress disease in fish are Streptococcus. (See UF/IFAS Circular 57 such as poor water quality (including drastic temperature Streptococcal Infections in Fish.) change), nutrition, genetics, and handling or transport must A third group, the acid-fast bacteria, which includes be removed or reduced.
    [Show full text]
  • 345 Part 524—Ophthalmic and Top- Ical Dosage Form New Ani- Mal Drugs
    Food and Drug Administration, HHS Pt. 524 (3) Steers fed in confinement for slaugh- PART 524—OPHTHALMIC AND TOP- ter—(i) Amount. 72 mg zeranol (one im- ICAL DOSAGE FORM NEW ANI- plant consisting of 6 pellets, each pel- MAL DRUGS let containing 12 mg zeranol) per im- plant dose. Sec. (ii) Indications for use. For increased 524.86 Amitraz. rate of weight gain and improved feed 524.154 Bacitracin, neomycin, and poly- efficiency. myxin B ophthalmic ointment. (iii) Limitations. Implant 524.155 Bacitracin, neomycin, polymyxin B, subcutaneously in ear only. Safety and and hydrocortisone ophthalmic oint- effectiveness have not been established ment. 524.390 Chloramphenicol ophthalmic oint- in veal calves. A withdrawal period has ment. not been established for this product in 524.402 Chlorhexidine. preruminating calves. Do not use in 524.450 Clotrimazole. calves to be processed for veal. 524.463 Copper naphthenate. (4) Pasture cattle (slaughter, stocker, 524.575 Cyclosporine ophthalmic ointment. feeder steers, and heifers)—(i) Amount. 524.590 Diclofenac. 138 mg zeranol (one implant consisting 524.660 Dimethyl sulfoxide. 524.770 Doramectin. of 7 pellets, each of 6 pellets containing 524.775 Emodepside and praziquantel. 20 mg zeranol and a seventh pellet con- 524.802 Enrofloxacin and silver sulfadiazine taining 18 mg zeranol) per implant otic emulsion. dose. 524.814 Eprinomectin. (ii) Indications for use. For increased 524.900 Famphur. rate of weight gain. 524.920 Fenthion. (iii) Limitations. Implant 524.916 Fentanyl. 524.955 Florfenicol, terbinafine, and subcutaneously in ear only. Safety and betamethasone acetate otic gel. effectiveness have not been established 524.957 Florfenicol, terbinafine, and in veal calves.
    [Show full text]
  • Food and Drug Administration, HHS § 524.86
    Food and Drug Administration, HHS § 524.86 524.981b Fluocinolone acetonide solution. 524.1484k Neomycin sulfate, prednisolone, 524.981c Fluocinolone acetonide, neomycin tetracaine, and squalane topical-otic sus- sulfate cream. pension. 524.981d Fluocinolone acetonide, dimethyl 524.1580 Nitrofurazone ophthalmic and top- sulfoxide solution. ical dosage forms. 524.981e Fluocinolone acetonide, dimethyl 524.1580a [Reserved] sulfoxide otic solution. 524.1580b Nitrofurazone ointment. 524.1005 Furazolidone aerosol powder. 524.1580c Nitrofurazone soluble powder. 524.1044 Gentamicin sulfate ophthalmic and 524.1580d [Reserved] topical dosage forms. 524.1580e Nitrofurazone ointment with buta- 524.1044a Gentamicin ophthalmic solution. caine sulfate. 524.1044b Gentamicin sulfate, 524.1600 Nystatin ophthalmic and topical betamethasone valerate otic solution. dosage forms. 524.1044c Gentamicin ophthalmic ointment. 524.1600a Nystatin, neomycin, thiostrepton, 524.1044d Gentamicin sulfate, and triamcinolone acetonide ointment. betamethasone valerate ointment. 524.1600b Nystatin, neomycin, thiostrepton, 524.1044e Gentamicin sulfate spray. and triamcinolone acetonide ophthalmic 524.1044f Gentamicin sulfate, ointment. betamethasone valerate topical spray. 524.1662 Oxytetracycline hydrochloride oph- 524.1044g Gentamicin sulfate, thalmic and topical dosage forms. betamethasone valerate, clotrimazole 524.1662a Oxytetracycline hydrochloride and ointment. hydrocortisone spray. 524.1044h Gentamicin sulfate, mometasone 524.1662b Oxytetracycline hydrochloride, furoate,
    [Show full text]
  • Equine Drugs & Medications
    Equine Drugs & Medications Presented by Kathy Ott, DVM – Cleary Lake Veterinary Hospital December 13, 2010 AGENDA A) Commonly Used Drugs 1) Anti-inflammatories (NSAIDs) 2) Antibiotics 3) Sedatives 4) Steroids Therapeutic Hormonal 5) Muscle Relaxants 6) Antihistamines 7) Blocking Agents 8) Reproductive Drugs 9) Anti-ulcer Drugs 10) Eye medications 11) Dewormers 12) Topicals 13) Diuretics 14) Miscellaneous B) Properly Giving Medications C) Show Regulations & Guidelines 1) USEF 2) AQHA D) Race Drugs E) Generic Drugs F) Compounded Drugs G) Open Discussion 1. Non-steroidal Anti-inflammatories (NSAIDS) Reduce inflammation (decreases swelling), control pain (analgesic) and reduce fever (Anti-pyretic) Excessive use can cause gastric or intestinal ulcers and/or kidney or liver damage and reduce clotting ability *Always take temperature (99-101) of horse first and confer with veterinarian prior to giving. Phenylbutazone (bute) Comes in pills, paste, powder or injectable Injectable can only be given in the vein, NOT in muscle; it will cause severe muscle damage. If it leaks outside the vein it can cause severe phlebitis or thrombosis of jugular vein. Most likely of the NSAIDs to cause ulcers from high doses or long-term use. Flunixin meglumine (Banamine®) Available in paste or injectable form Good drug for colic and muscle pain Allow 30 – 40 minutes to take effect Intramuscular injections of Banamine can cause severe or fatal clostridial myositis and are not recommended. IV injections can accidentally be given intra-arterially (carotid artery) and cause seizures, collapse and death. Ketoprofen (Ketofen®) Shorter half-life than above drugs so less damaging but also shorter time it’s effective.
    [Show full text]
  • Hereditary Hemolytic Anemia II
    The objective of this manual is to provide information about hereditary hemolytic anemia to patients and their relatives, as we know that medical information and its technical jargon can be difficult or incomprehensible to most people. Thus, we hope it can answer your questions. Any comments are welcome, either about the clarity or omission of some information considered important they can be sent as suggestions to HEMORIO or by e-mail [email protected] . What is hemolytic anemia? Hereditary Hemolytic Anemia comprises a group of disorders in which red blood cells of affected individuals exhibit a phenomenon known as "hemolysis" which is his break prematurely, leading to anemia. His heritage is genetic, or inherited from parents, so they are called "heritable". There are several different types of hereditary hemolytic anemia, which vary in severity, some causing many problems, and others almost none. It is necessary to know the characteristics of red blood cells (RBCs) in order to better understand the hemolytic anemia. Function: The red blood cell operates carrying oxygen to tissues, constituting thus the main fuel for organs. Evolution: The development of blood cells is a process called Hematopoiesis. Red blood cells enter the bloodstream after having already gone through the process of growth that occurs in bone marrow. Bone marrow is a soft tissue, like a sponge and it is found in the cavities of many bones. Adult red blood cells must be in adequate number to develop their functions properly. The red cell membrane should be extremely tough yet highly flexible and deformable to withstand the aggressions in circulation and move through tiny capillaries and "pores" of the spleen.
    [Show full text]
  • Pharmacogenomic Associations Tables
    Pharmacogenomic Associations Tables Disclaimer: This is educational material intended for health care professionals. This list is not comprehensive for all of the drugs in the pharmacopeia but focuses on commonly used drugs with high levels of evidence that the CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5 only) and other select genes are relevant to a given drug’s metabolism. If a drug is not listed, there is not enough evidence for inclusion at this time. Other CYPs and other genes not described here may also be relevant but are out of scope for this document. This educational material is not intended to supersede the care provider’s experience and knowledge of her or his patient to establish a diagnosis or a treatment plan. All medications require careful clinical monitoring regardless of the information presented here. Table of Contents Table 1: Substrates of Cytochrome P450 (CYP) Enzymes Table 2: Inhibitors of Cytochrome P450 (CYP) Enzymes Table 3: Inducers of Cytochrome P450 (CYP) Enzymes Table 4: Alternate drugs NOT metabolized by CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 or CYP3A5 enzymes Table 5: Glucose-6-Phosphate Dehydrogenase (G6PD) Associated Drugs and Compounds Table 6: Additional Pharmacogenomic Genes & Associated Drugs Table 1: Substrates of Cytochrome P450 (CYP) Enzymes Allergy Labetalol CYP2C19 Immunosuppressives Loratadine CYP3A4 Lidocaine CYP1A2 CYP2D6 Cyclosporine CYP3A4/5 Analgesic/Anesthesiology CYP3A4/5 Sirolimus CYP3A4/5 Losartan CYP2C9 CYP3A4/5 Codeine CYP2D6 activates Tacrolimus CYP3A4/5 Lovastatin
    [Show full text]
  • Efficacy of Commercial Sanitizers Used in Food Processing Facilities
    foods Article Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria monocytogenes, E. Coli O157:H7, and Salmonella Biofilms Manish Aryal 1,2 and Peter M. Muriana 1,2,* 1 Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA; [email protected] 2 Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA * Correspondence: [email protected]; Tel.: +01-405-744-5563 Received: 9 November 2019; Accepted: 28 November 2019; Published: 4 December 2019 Abstract: Bacteria entrapped in biofilms are a source of recurring problems in food processing environments. We recently developed a robust, 7-day biofilm microplate protocol for creating biofilms with strongly adherent strains of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella serovars that could be used to examine the effectiveness of various commercial sanitizers. Listeria monocytogenes 99-38, E.coli O157:H7 F4546, and Salmonella Montevideo FSIS 051 were determined from prior studies to be good biofilm formers and could be recovered and enumerated from biofilms following treatment with trypsin. Extended biofilms were generated by cycles of growth and washing daily, for 7 days, to remove planktonic cells. We examined five different sanitizers (three used at two different concentrations) for efficacy against the three pathogenic biofilms. Quaternary ammonium chloride (QAC) and chlorine-based sanitizers were the least effective, showing partial inhibition of the various biofilms within 2 h (1–2 log reduction). The best performing sanitizer across all three pathogens was a combination of modified QAC, hydrogen peroxide, and diacetin which resulted in ~6–7 log reduction, reaching levels below our limit of detection (LOD) within 1–2.5 min.
    [Show full text]