[3 + N] Cycloaddition Reactions: a Milestone Approach for Elaborating Pyridazine of Potential Interest in Medicinal Chemistry and Optoelectronics

Total Page:16

File Type:pdf, Size:1020Kb

[3 + N] Cycloaddition Reactions: a Milestone Approach for Elaborating Pyridazine of Potential Interest in Medicinal Chemistry and Optoelectronics molecules Review [3 + n] Cycloaddition Reactions: A Milestone Approach for Elaborating Pyridazine of Potential Interest in Medicinal Chemistry and Optoelectronics Dorina Amariucai-Mantu 1, Violeta Mangalagiu 2,* and Ionel I. Mangalagiu 1,2,* 1 Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania; [email protected] 2 CERNESIM Centre, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania * Correspondence: [email protected] (V.M.); [email protected] (I.I.M.) Abstract: During the last few decades, pyridazine derivatives have emerged as privileged structures in heterocyclic chemistry, both because of their excellent chemistry and because of their potential applications in medicinal chemistry and optoelectronics. This review is focused on the recent advances in [3 + n] cycloaddition reactions in the pyridazine series as well as their medicinal chemistry and optoelectronic applications over the last ten years. The stereochemistry and regiochemistry of the cycloaddition reactions are discussed. Applications in optoelectronics (in particular, as fluorescent materials and sensors) and medicinal chemistry (in particular, antimicrobials and anticancer) are also reviewed. Citation: Amariucai-Mantu, D.; Mangalagiu, V.; Mangalagiu, I.I. Keywords: [3 + n] cycloaddition reactions; ylides; pyridazine; stereochemistry; regiochemistry; [3 + n] Cycloaddition Reactions: A medicinal chemistry; optoelectronics Milestone Approach for Elaborating Pyridazine of Potential Interest in Medicinal Chemistry and Optoelectronics. Molecules 2021, 26, 1. Introduction 3359. https://doi.org/10.3390/ [3 + n] cycloaddition reactions represent one of the most important and efficient molecules26113359 tools in the synthesis of heterocyclic rings, consisting of the addition of a multiple bond dipolarophile to a three-atom component system (TACS). Because of their complexity, Academic Editor: [3 + 2] cycloaddition reactions have been extensively studied in the last 60 years [1–14], Francesca Mancianti with interesting and heated discussions being involved in order to explain them. The [3 + 2] dipolar cycloaddition reactions were discovered by Rolf Huisgen in the Received: 22 April 2021 early 1960s, more than 60 years ago [1,2]. The Huisgen [3 + 2] dipolar cycloaddition reac- Accepted: 1 June 2021 Published: 2 June 2021 tions represent an addition of a 1,3-dipole to a dipolarophile, leading to a five-membered heterocyclic ring [1–7], via a concerted mechanism, as presented in Scheme1. The 1,3- Publisher’s Note: MDPI stays neutral dipole is a molecule with three atoms (abc), with a sextet of electrons (consequently, with a with regard to jurisdictional claims in positive charge) to a marginal atom, and to the other marginal atom, a pair of non-bonding published maps and institutional affil- electrons (consequently, with a negative charge). The sextet formulas of the 1,3-dipole are iations. stabilized by the non-bonding electrons of the central atom, adopting another canonical structure—the octet zwitterionic form. The dipolarophile is represented by an activated alkene or alkyne. At the end of the 1960s, Firestone [9,10] proposed an alternative explanation for [3 + 2] cycloaddition reactions, via a radical mechanism (Scheme1). In his approach, Firestone Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. proposed a two-step mechanism, via the formation of a diradical intermediate. This article is an open access article Over the last decade, Domingo’s team [11–14] have revealed new, interesting con- distributed under the terms and siderations concerning the mechanistic inside of [3 + 2] cycloaddition reactions, based on conditions of the Creative Commons molecular electron density theory (MEDT). Using their research, they classify the TACS Attribution (CC BY) license (https:// in pseudo-diradical, pseudoradical, zwitterionic and carbenoid. Using MEDT theory, creativecommons.org/licenses/by/ [3 + 2] cycloaddition reactions have been classified by Domingo into the corresponding 4.0/). pseudo-diradical, pseudoradical, zwitterionic and carbenoid reactions [11–14]. Molecules 2021, 26, 3359. https://doi.org/10.3390/molecules26113359 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x 2 of 17 Molecules 2021, 26, 3359 2 of 16 Molecules 2021, 26, x 2 of 17 Scheme 1. The [3 + 2] cycloadditions approach for obtaining five-membered heterocycles: Huisgen dipolar mechanism and Firestone diradical mechanism. At the end of the 1960s, Firestone [9,10] proposed an alternative explanation for [3 + 2] cycloaddition reactions, via a radical mechanism (Scheme 1). In his approach, Firestone proposed a two-step mechanism, via the formation of a diradical intermediate. Over the last decade, Domingo’s team [11–14] have revealed new, interesting consid- erations concerning the mechanistic inside of [3 + 2] cycloaddition reactions, based on mo- lecular electron density theory (MEDT). Using their research, they classify the TACS in SchemeSchemepseudo 1.1.-diradical, TheThe [3[3 ++ 2] pseudoradical, cycloadditions approach zwitterionic for obtaining and carbenoid five-memberedfive-membered. Using heterocycles:MEDTheterocycles: theory, Huisgen [3 + 2] dipolardipolarcycloaddition mechanismmechanism reactions andand FirestoneFirestone have been diradicaldiradical classified mechanism.mechanism. by Domingo into the corresponding pseudo- diradical, pseudoradical, zwitterionic and carbenoid reactions [11–14]. AnAtAn the interesting interesting end of the case case 196 of of0 [3s, [3 +Firestone + 2]2] cycloadditioncycloaddition [9,10] proposed reactionsreactions an is isalternative representedrepresented explanationby by thethe cycloaddi-cycloaddi- for [3 + tion2]tion cycloaddition of of cycloimmonium cycloimmonium reactions, ylides ylides via to a variousradicalto various mechanism symmetrically symmetric (Schemeally and and non-symmetrically 1). nonIn his-symmetric approach substitutedally, Firestone substi- dipolarophiles,proposedtuted dipolarophiles a two Scheme-step mechanism,, Scheme2. The [3 2 +. viaThe 2] cycloaddition the [3 formation+ 2] cycloaddition reactions of a diradical ofreactions cycloimmonium intermediate. of cycloimmonium ylides to symmetricallyylidesOver to symmetricallythe last substituted decade, substituted ZDomingo’s(or cis) and Z team (orE (or cis[11trans) –and14)] olefinshaveE (or reveal trans involve)ed olefins new interesting, interestinginvolve problems interesting consid- of stereochemistry,erationsproblems concerning of stereochemistry, these the reactions mechanistic these being reactionsinside highly of stereospecific [3being + 2] cycloadditionhighly [stereospecific8,15,16 reactions]. [8,15,16], based. on mo- lecular electron density theory (MEDT). Using their research, they classify the TACS in pseudo-diradical, pseudoradical, zwitterionic and carbenoid. Using MEDT theory, [3 + 2] cycloaddition reactions have been classified by Domingo into the corresponding pseudo- diradical, pseudoradical, zwitterionic and carbenoid reactions [11–14]. An interesting case of [3 + 2] cycloaddition reactions is represented by the cycloaddi- tion of cycloimmonium ylides to various symmetrically and non-symmetrically substi- tuted dipolarophiles, Scheme 2. The [3 + 2] cycloaddition reactions of cycloimmonium ylides to symmetrically substituted Z (or cis) and E (or trans) olefins involve interesting problems of stereochemistry, these reactions being highly stereospecific [8,15,16]. SchemeScheme 2. 2.Stereochemistry Stereochemistry ofof additionaddition ofof cycloimmoniumcycloimmonium ylides to symmetrically substituted substituted ciscis andandtrans transolefins. olefins. TheThe [3 [3 + + 2] 2] cycloaddition cycloaddition reactions reactions of of cycloimmonium cycloimmonium ylides ylides to to non-symmetrically non-symmetrically substitutedsubstituted dipolarophiles dipolarophiles (with (with double double or or triple triple bond) bond) involve involve interesting interesting combined combined stereo- ste- andreo- regiochemistry and regiochemistry aspects aspects [17–21 [17]. In–21 the]. In regiochemistry the regiochemistry case, because case, because of the doubleof the double sense ofsense the additionof the addition of ylide of to ylide dipolarophile, to dipolarophile, two reactions two reactions pathways pathways (I or II) are (I or possible, II) are possi- with theble, formation with the formation of two pairs of oftwo regioisomers pairs of regioisomers (A, A’ and B(A, B’, A’, Schemeand B, B’3),, Scheme according 3), to according orbital, stericto orbital, and electronic steric and factors. electronic factors. SchemeOn 2. the Stereochemistry other hand, [3of +addition 2] cycloaddition of cycloimmonium reactions ylides represent to symmetrically an accessible substituted and facile cis tooland trans to obtain olefins. pyridazine derivatives of potential interest in medicinal chemistry (as an- tibacterials, antifungals, antituberculars, antivirals, anticancer agents, anti-inflammatories, antihypertensives,The [3 + 2] cycloaddition diuretics, etc.) reactions [22,23 ]of and cycloimmonium in optoelectronics ylides (as to highlynon-symmetrical fluorescently materials,substituted sensors dipolarophiles and biosensors, (with double lasers, or etc.) triple [24 ].bond) involve interesting combined ste- reo- andFrom regiochemistry a previous review aspects conducted [17–21]. In ten the years regiochemistry ago [23], it case, is clear because that the of
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • Reaction Mechanism
    Reaction Mechanism A detailed sequence of steps for a reaction Reasonable mechanism: 1. Elementary steps sum to the overall reaction 2. Elementary steps are physically reasonable 3. Mechanism is consistent with rate law and other experimental observations (generally found from rate limiting (slow) step(s) A mechanism can be supported but never proven NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! Note the NO3 intermediate product! Arrhenius Equation Temperature dependence of k kAe E/RTa A = pre-exponential factor Ea= activation energy Now let’s look at the NO2 + CO reaction pathway* (1D). Just what IS a reaction coordinate? NO2 + CO NO + CO2 High barrier TS for step 1 Reactants: Lower barrier TS for step 2 NO2 +NO2 +CO Products Products Bottleneck NO +CO2 NO +CO2 Potential Energy Step 1 Step 2 Reaction Coordinate NO2 + CO NO + CO2 NO22 NO NO 3 NO NO CO NO CO 222In this two-step reaction, there are two barriers, one for each elementary step. The well between the two transition states holds a reactive intermediate.
    [Show full text]
  • Chapter 14 Chemical Kinetics
    Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate of formation of products and the rate of disappearance of reactants given the balanced chemical equation for the reaction. Understand the form and meaning of a rate law including the ideas of reaction order and rate constant. Determine the rate law and rate constant for a reaction from a series of experiments given the measured rates for various concentrations of reactants. Use the integrated form of a rate law to determine the concentration of a reactant at a given time. Explain how the activation energy affects a rate and be able to use the Arrhenius Equation. Predict a rate law for a reaction having multistep mechanism given the individual steps in the mechanism. Explain how a catalyst works. C (diamond) → C (graphite) DG°rxn = -2.84 kJ spontaneous! C (graphite) + O2 (g) → CO2 (g) DG°rxn = -394.4 kJ spontaneous! 1 Chemical kinetics is the study of how fast chemical reactions occur. Factors that affect rates of reactions: 1) physical state of the reactants. 2) concentration of the reactants. 3) temperature of the reaction. 4) presence or absence of a catalyst. 1) Physical State of the Reactants • The more readily the reactants collide, the more rapidly they react. – Homogeneous reactions are often faster. – Heterogeneous reactions that involve solids are faster if the surface area is increased; i.e., a fine powder reacts faster than a pellet. 2) Concentration • Increasing reactant concentration generally increases reaction rate since there are more molecules/vol., more collisions occur.
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • The Arene–Alkene Photocycloaddition
    The arene–alkene photocycloaddition Ursula Streit and Christian G. Bochet* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 525–542. Department of Chemistry, University of Fribourg, Chemin du Musée 9, doi:10.3762/bjoc.7.61 CH-1700 Fribourg, Switzerland Received: 07 January 2011 Email: Accepted: 23 March 2011 Ursula Streit - [email protected]; Christian G. Bochet* - Published: 28 April 2011 [email protected] This article is part of the Thematic Series "Photocycloadditions and * Corresponding author photorearrangements". Keywords: Guest Editor: A. G. Griesbeck benzene derivatives; cycloadditions; Diels–Alder; photochemistry © 2011 Streit and Bochet; licensee Beilstein-Institut. License and terms: see end of document. Abstract In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. Introduction Photocycloadditions occur in a variety of modes [1]. The best In the presence of an alkene, three different modes of photo- known representatives are undoubtedly the [2 + 2] photocyclo- cycloaddition with benzene derivatives can occur, viz. the addition, forming either cyclobutanes or four-membered hetero- [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para cycles (as in the Paternò–Büchi reaction), whilst excited-state photocycloaddition (Scheme 2). The descriptors ortho, meta [4 + 4] cycloadditions can also occur to afford cyclooctadiene and para only indicate the connectivity to the aromatic ring, and compounds. On the other hand, the well-known thermal [4 + 2] do not have any implication with regard to the reaction mecha- cycloaddition (Diels–Alder reaction) is only very rarely nism.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]
  • Predictive Models for Kinetic Parameters of Cycloaddition
    Predictive Models for Kinetic Parameters of Cycloaddition Reactions Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, Daria Malakhova, Gilles Marcou, Alexandre Varnek To cite this version: Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, et al.. Predictive Models for Kinetic Parameters of Cycloaddition Reactions. Molecular Informatics, Wiley- VCH, 2018, 38 (1-2), pp.1800077. 10.1002/minf.201800077. hal-02346844 HAL Id: hal-02346844 https://hal.archives-ouvertes.fr/hal-02346844 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 0DQXVFULSW &OLFNKHUHWRGRZQORDG0DQXVFULSW&$UHYLVLRQGRF[ Predictive models for kinetic parameters of cycloaddition reactions Marta Glavatskikh[a,b], Timur Madzhidov[b], Dragos Horvath[a], Ramil Nugmanov[b], Timur Gimadiev[a,b], Daria Malakhova[b], Gilles Marcou[a] and Alexandre Varnek*[a] [a] Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France; [b] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia Abstract This paper reports SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of three kinetic properties of cycloaddition reactions: rate constant (logk), activation energy (Ea) and pre-exponential factor (logA).
    [Show full text]
  • Nucleophilic Substitution and Elimination Reactions
    8 NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS substitution reactions involve the replacement of one atom or group (X) by another (Y): We already have described one very important type of substitution reaction, the halogenation of alkanes (Section 4-4), in which a hydrogen atom is re- placed by a halogen atom (X = H, Y = halogen). The chlorination of 2,2- dimethylpropane is an example: CH3 CH3 I I CH3-C-CH3 + C12 light > CH3-C-CH2Cl + HCI I I Reactions of this type proceed by radical-chain mechanisms in which the bonds are broken and formed by atoms or radicals as reactive intermediates. This 8-1 Classification of Reagents as Electrophiles and Nucleophiles. Acids and Bases mode of bond-breaking, in which one electron goes with R and the other with X, is called homolytic bond cleavage: R 'i: X + Y. - X . + R : Y a homolytic substitution reaction There are a large number of reactions, usually occurring in solution, that do not involve atoms or radicals but rather involve ions. They occur by heterolytic cleavage as opposed to homolytic cleavage of el~ctron-pairbonds. In heterolytic bond cleavage, the electron pair can be considered to go with one or the other of the groups R and X when the bond is broken. As one ex- ample, Y is a group such that it has an unshared electron pair and also is a negative ion. A heterolytic substitution reaction in which the R:X bonding pair goes with X would lead to RY and :X? R~:X+ :YO --' :x@+ R :Y a heterolytic substitution reaction A specific substitution reaction of this type is that of chloromethane with hydroxide ion to form methanol: In this chapter, we shall discuss substitution reactions that proceed by ionic or polar mechanisms' in which the bonds cleave heterolytically.
    [Show full text]
  • The Mechanism of the Cycloaddition Reaction of 1,3-Dipole Molecules with Acetylene: an Investigation with the Unified Reaction Valley Approach
    Theor Chem Acc (2014) 133:1423 DOI 10.1007/s00214-013-1423-z REGULAR ARTICLE The mechanism of the cycloaddition reaction of 1,3-dipole molecules with acetylene: an investigation with the unified reaction valley approach Marek Freindorf • Thomas Sexton • Elfi Kraka • Dieter Cremer Received: 10 September 2013 / Accepted: 12 November 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The unified reaction valley approach (URVA) between vibrational modes lead to an unusual energy is used in connection with a dual-level approach to describe exchange between just those bending modes that facilitate the mechanism of ten different cycloadditions of 1,3- the formation of radicaloid centers. The relative magnitude dipoles XYZ (diazonium betaines, nitrilium betaines, azo- of the reaction barriers and reaction energies is rationalized methines, and nitryl hydride) to acetylene utilizing density by determining reactant properties, which are responsible functional theory for the URVA calculations and for the mutual polarization of the reactants and the stability CCSD(T)-F12/aug-cc-pVTZ for the determination of the of the bonds to be broken or formed. reaction energetics. The URVA results reveal that the mechanism of the 1,3-dipolar cycloadditions is determined Keywords Unified reaction valley approach Á early in the van der Waals range where the mutual orien- 1,3-Dipolar cycloadditions Reaction mechanism tation of the reactants (resulting from the shape of the Mutual polarization EnergyÁ transfer and dissipationÁ Á enveloping exchange repulsion spheres, electrostatic attraction, and dispersion forces) decides on charge trans- fer, charge polarization, the formation of radicaloid cen- 1 Introduction ters, and the asynchronicity of bond formation.
    [Show full text]
  • Aromatic Substitution Reactions: an Overview
    Review Article Published: 03 Feb, 2020 SF Journal of Pharmaceutical and Analytical Chemistry Aromatic Substitution Reactions: An Overview Kapoor Y1 and Kumar K1,2* 1School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon, Haryana, India 2School of Pharmacy and Technology Management, SVKM’s NMIMS University, Hyderabad, Telangana, India Abstract The introduction or replacement of substituent’s on aromatic rings by substitution reactions is one of the most fundamental transformations in organic chemistry. On the basis of the reaction mechanism, these substitution reactions can be divided into electrophilic, nucleophilic, radical, and transition metal catalyzed. This article also focuses on electrophilic and nucleophilic substitution mechanisms. Introduction The replacement of an atom, generally hydrogen, or a group attached to the carbon from the benzene ring by another group is known as aromatic substitution. The regioselectivity of these reactions depends upon the nature of the existing substituent and can be ortho, Meta or Para selective. Electrophilic Aromatic Substitution (EAS) reactions are important for synthetic purposes and are also among the most thoroughly studied classes of organic reactions from a mechanistic point of view. A wide variety of electrophiles can effect aromatic substitution. Usually, it is a substitution of some other group for hydrogen that is of interest, but this is not always the case. For example, both silicon and mercury substituent’s can be replaced by electrophiles. The reactivity of a particular electrophile determines which aromatic compounds can be successfully substituted. Despite the wide range of electrophilic species and aromatic ring systems that can undergo substitution, a single broad mechanistic picture encompasses most EAS reactions.
    [Show full text]