GECLCGY 409 1964 Tpm Richards

Total Page:16

File Type:pdf, Size:1020Kb

GECLCGY 409 1964 Tpm Richards GECLCGY 409 KAY GROTJF; QIENICA MINING DISTRICT 1964 Tpm Richards INDEX Summary Introduction page 1 General Geology 1 Procedure 2 Megascopic Description 2 Microscopic Description 3 Paragenesis 11 Temperature of formation 18 Some Genetic Considerations 19 Alteration Minerals 20 Plates 22 Acknowledgements 29 Bibliography 29 The mineralization of the Kay Group occurr. i in a small fault zone, associated with a sheard argillite and feldspar porphyry. The following primary minerals were found: pyrrhotite, pyrite, marcasite, arsenopyrite, sphalerite, tetiahedrite chalcopyrite, jamesonite, native gold, andorite, st i.khtte,: , berthierite galena, an unknown Bismuth mineral and a hydrocarbon, A brief and incomplete study of the secondary minerals was under• taken and goethite, realgar, orpiment, scorodite, gypsy bimdheimite, valentenite and various other amorphous or ill defined alteration products were found. From the characteristics of the ore, the deposit was classified as either xenothermal or epithermal ^ INTRODUCTION The Kay Group was originally staked in 1944. It is located on a hillside west of the Bralorne Takla mercury mine; the main showing being between 4500 and 4500 feet. The property is located 36 miles by road from Takla Landing. The property was optioned to Leta Explorations in 194b, but was dropped In the same year. GENERAL GEOLOGY The area is underlain by a blue-grey limestone of JPennsylvanian and/or Permian age. A band of crushed argillite occurs near the snowing and several dykes of feldspar porphyry cut the limestone and the argillite. The deposit lies along a fault zone 25 feet wide and strides 15°W of N, and follows ap• proximately along the crushed band of argillite. The fault dips vary from 60°N to 75° SW. Mineralization can be traced along the surface for 700 feet, with the ore occuririg in lenses, the largest of these lenses is several feet wide and about 20 feet long. The ore minerals determined ±n trie report (CsC TAeww- 2.5 Z ) are as follows in the order of abundance: stibnite, jamesonite, arsenopyrite, sphalerite, pyrite, andorite, argentiferous tetra- hedrite, native silver, quartz and realgar. An analysis of the andorite ( Qsc m^0vC 2-5 ?„ ) follows: Pb: 20.89$ Ag: 9.18$ Gu: 1.45% pe: 2.07$ Zn> 0.50$ As: 0.76$ Sb: 41.07$ S: 21.85$ insoluble: 1.83$ Assays from the surface exposures went up to 100 oz/Ton of silver and an appreciable content of gold, but underground development was disappointing. The fault zone crossing the property probably forms part of the pinchi Laite fault zone. PROCEDURE The specimens from the Kay Group were first studied under the binocular microscope and certain ore minerals and oxidation products were noted. The microscope work consisted of the inspection of about 50 polished sections using the mineralographic microscope, accompanied by etch tests and microchemical analysis. X-ray powder photographs were taken to confirm certain ore minerals and secondary minerals. MEGASCOPIC DESCRIPTION Only a few ore minerals could be identified positively from the hand specimen. These were stibnlte, jamesonite, sphalerite, tetrahedrite, arsenopyrite and pyrite. The ore usually occurred In two iitypes, as massive ore, or as open space fillings. These two textures are strongly controlled by the type of rock they occur in, the massive ore was more closely related to the incompetent sheared argillite, and the open space fillings confined to the competent, partially sericitized feldspar porphyry. The ore minerals in the massive zone are Invariably arsenopyrite, pyrite, argentiferous tetrahedrite, sphalerite and minor sulphosalts. Occasionally massive zones of pyrite ^re visible, but. arsenopyrite wis the major sulphide. Some small quartz lenses resembling quartz rods foilOWL L the foliation 3 of the sheared argillite. Pyrite is the only sulphide in these lenses. Quartz veins in. to 2 in. in width) follow approximately parallel to the foliation of the argillite out !J<oci%s^\^i<cross the foliation. Pyrite is the main sulphide with some sphalerite. The Veins are often locally zoned, pyrite predominant In the centre, with sphalerite increasing outwards to the edge of the vein. At the edge of the vein sphalerite is predominant but gives way to trie sulpnosalts. In a few in• stances the outward extremity of this ill defined zoning is characterized by stibnite displaying an open work texture. The fissures in trie open space fillings are usually very thin (less than ^ In. in width) to about 1 inch ia width.") In the closed portion of the vein, quartz and sphalerite alter• nate as trie major fillings, while in the open cavities stibnite crystals predominate, with minor quartz crystals. In the larger cavities well formed sphalerite tetrahedrons also occur. Stibnite usually occurs alone as dense radiating crystals, fine hair-like crystals or compact radiating masses enclosed entirely by the quartz gangue. MICROSCOPIC DESCRIPTION Fourteen sulphides and sulpnosalts and one hydrocarbon were determined or verified by microscopic analysis. These are listed below, followed by a description of various relationships, associations and properties. a.) niclaliferipous pyrrhotite b •) pyrite Pe S2 c .) marcasite Pe S2 d.) arsenopipite Pe As S e.) sphalerite (Zn Pe)S to ZnS f •) tetrahedrite (Cu Pe Ag)12 Sb4 S13 sO chalcopyrite Gu Pe S2 h.) andorite Fo Ag Sb3 S6 i •) jamesonite Pb4Pe Sb6 S11 J •) stibnite Sb2 S3 k.) berthierite Pe Sb2 S4 1-) galena Pb S m.) gold AU n*) bitumen hydrocarbon o •) unknown "B^" mineral a. ) Nickliferjrous pyrrhotite Fyrrhotite was seen only In one section. Its appearance, which first seems to be somewhat incongruous with the other low temperature associations, can be attributed to a previous period of mineralization^ (plate 1), The pyrrhotite is invariably associated with early pyrite and sphalerite (var. marmatite) and in places has been altered to marcasite. b. ) pyrite pyrite ..is associated with all stages of mineralizatio The pyrite with the pyrrhotite occurs as small, bright yellow perfectly formea cubes. The alteration of pyrrhotite to marcasite has not affected these cubes (pyrite after pyrrhotite may exist^ (plate l)t Pyrite, with minor arsenopyrite is very common as a wall rock alteration in the feldspar porphyry, but pyrite alone occurs in the silicified sheared argillite. Massive pyrite, showing very few crystal faces occurs associated with the wall rock, and massive arsenopyrite. Sphalerite, jamesonite and an• dorite often fill fractures in the pyrite. Pyrite, with a porphyritic texture, occurs in jamesonite (Plate 2), the jamesonite effectively rounding some of the pyrite crystals. Pyrite also occurs in the low temperature sphalerite phase, as small spheroidal blebs within the sphalerite. The more Fe the sphalerite contains, the more conspicious the pyrite becomes, c. ) Marcasite The marcasite forms as small, pale yellow radiating crystals, which under crossed nicols display' , well developed twin lamellae. The marcasite is an alteration product of pyrrhotite, and is concentrated around the pyrite but does not replace it, d. ) Arsenopyrite A large percentage of the arsenopyrite forms tightly intergrown, crystalline aggregates. The open spaces between crystals are usually filled with quartz, sphalerite and/or tetra• hedrite. Like the pyrite some arsenopyrite occurs as single highly corroded crystals in jamesonite (Plate 2). Some of the massive arsenopyrite has been cataclastically deformed on a small scale. Arsenopyrite also occurs as wall rock alteration with the pyrite. 6 ^ e•) Sphalerite There are three distinct sphalerites in the oitc. The firstf the variety marmatite*associated with the pyrrhotite. The internal reflection of this variety is very dull to almost non-exsistent• The second sphalerite is the most predominant variety. In the hand specimen its colour is reddish to reddish brown, and in the polished section it has an orange red internal reflection. Plates 3$ ^ and 5 show the typical textural relationships and ore relationships of the sphalerite. Occasionally exsolved chalcopyrite is present. The third sphalerite is easily recognized by its red to yellow internal reflection and its association with calcite, galena and occasionally bitumen (Plate 6 and 7)# This sphalerite is locally zoned from relatively high Fe content (estimated at about 2 - 3$) to very low Fe content (estimated at about 0.3$), forming the red to yellow sphalerite respectively. The yellow sphalerite is much coarser grained than the red variety. r f. ) Tetrahedrite CM VC^W^NW) Tetrahedrite is very restricted in its occurrence, either as fillings between the crystals of arsenopyrite or as rounded blebs in jamesonite. The tetrahedrite in the arsenopyrite is occasionally very massive, (these gave a good bichromate test for silver). Large exsolution blebs of chalcopyrite are -common, but more so in the jamesonite association than in the arsenopyrite. g. ) Chalcopyrite Chalcopyrite occurs as minute exsolution blebs in sphalerite seen only under high power, M larger exsolution and/or reaction products in the tetra• hedrite. The blebs in sphalerite strfc. r<arAotn\^ <^\<\\>\>\,eA - ~ h. ) Andorite / The source of most of the silver values from the property was from the andorite. The following properties were used to determine the mineral. 7 Optical: r Colour: white to white grey Hardness: B Anisotropism: distinct - colours grey to tan to brownish to light blueish Habit: massive grains to stubby corroded aggregates Etch tests: aqua Vega: efferveses vigorously, stains iridescent to black HNOx : etches
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Pyrostilpnite Ag3sbs3 C 2001-2005 Mineral Data Publishing, Version 1
    Pyrostilpnite Ag3SbS3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular {010} giving flat rhombic forms; also laths by elongation k [001], to 1 mm; as subparallel sheaflike aggregates. Twinning: On {100} with (100) as composition plane. Physical Properties: Fracture: Conchoidal. Tenacity: Somewhat flexible in thin plates. Hardness = 2 VHN = 95–115, 107 average (100 g load). D(meas.) = 5.94 D(calc.) = 5.97 Optical Properties: Transparent. Color: Hyacinth-red; lemon-yellow by transmitted light. Streak: Yellow-orange. Luster: Adamantine. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ c = 8–11◦. α = Very high. β = Very high. γ = Very high. R1–R2: (400) 36.3–36.9, (420) 36.3–36.5, (440) 36.1–35.8, (460) 35.7–35.1, (480) 34.9–34.2, (500) 33.9–33.2, (520) 32.3–31.8, (540) 30.8–30.3, (560) 29.6–29.2, (580) 28.6–28.2, (600) 27.8–27.5, (620) 27.1–26.7, (640) 26.6–26.2, (660) 26.2–25.8, (680) 25.9–25.4, (700) 25.6–25.2 ◦ 0 Cell Data: Space Group: P 21/c. a = 6.84 b = 15.84 c = 6.24 β = 117 09 Z=4 X-ray Powder Pattern: Pˇr´ıbram, Czech Republic. 2.85 (100), 2.65 (50), 2.42 (50), 1.895 (50b), 1.887 (50b), 1.824 (20b), 1.813 (20b) Chemistry: (1) (2) (3) Ag 59.44 59.7 59.76 Sb 22.30 23.7 22.48 S 18.11 16.8 17.76 Total 99.85 100.2 100.00 (1) St.
    [Show full text]
  • Ag-Pb-Sb Sulfosalts and Se-Rich Mineralization of Anthony of Padua
    minerals Article Ag-Pb-Sb Sulfosalts and Se-rich Mineralization of Anthony of Padua Mine near Poliˇcany—Model Example of the Mineralization of Silver Lodes in the Historic Kutná Hora Ag-Pb Ore District, Czech Republic Richard Pažout 1,*, Jiˇrí Sejkora 2 and Vladimír Šrein 3 1 Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9–Horní Poˇcernice,Czech Republic 3 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic * Correspondence: [email protected]; Tel.: +420-220444080 Received: 3 May 2019; Accepted: 6 July 2019; Published: 12 July 2019 Abstract: Significant selenium enrichment associated with selenides and previously unknown Ag-Pb-Sb, Ag-Sb and Pb-Sb sulfosalts has been discovered in hydrothermal ore veins in the Anthony of Padua mine near Poliˇcany, Kutná Hora ore district, central Bohemia, Czech Republic. The ore mineralogy and crystal chemistry of more than twenty silver minerals are studied here. Selenium mineralization is evidenced by a) the occurrence of selenium minerals, and b) significantly increased selenium contents in sulfosalts. Identified selenium minerals include aguilarite and selenides naumannite and clausthalite. The previously unknown sulfosalts from Kutná Hora are identified: Ag-excess fizélyite, fizélyite, andorite IV, andorite VI, unnamed Ag-poor Ag-Pb-Sb sulfosalts, semseyite, stephanite, polybasite, unnamed Ag-Cu-S mineral phases and uytenbogaardtite. Among the newly identified sulfides is argyrodite; germanium is a new chemical element in geochemistry of Kutná Hora. Three types of ore were recognized in the vein assemblage: the Pb-rich black ore (i) in quartz; the Ag-rich red ore (ii) in kutnohorite-quartz gangue; and the Ag-rich ore (iii) in milky quartz without sulfides.
    [Show full text]
  • Oyonite, Ag3mn2pb4sb7as4s24, a New Member of the Lillianite Homologous Series from the Uchucchacua Base-Metal Deposit, Oyon District, Peru
    minerals Article Oyonite, Ag3Mn2Pb4Sb7As4S24, a New Member of the Lillianite Homologous Series from the Uchucchacua Base-Metal Deposit, Oyon District, Peru Luca Bindi 1,* ID , Cristian Biagioni 2 and Frank N. Keutsch 3 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy 2 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy; [email protected] 3 Paulson School of Engineering and Applied Sciences and Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; [email protected] * Correspondence: luca.bindi@unifi.it; Tel.: +39-055-275-7532 Received: 18 April 2018; Accepted: 1 May 2018; Published: 2 May 2018 Abstract: The new mineral species oyonite, ideally Ag3Mn2Pb4Sb7As4S24, has been discovered in the Uchucchacua base-metal deposit, Oyon district, Catajambo, Lima Department, Peru, as very rare black metallic subhedral to anhedral crystals, up to 100 µm in length, associated with orpiment, tennantite/tetrahedrite, menchettiite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S, 2 in calcite matrix. Its Vickers hardness (VHN100) is 137 kg/mm (range 132–147). In reflected light, oyonite is weakly to moderately bireflectant and weakly pleochroic from dark grey to a dark green. Internal reflections are absent. Reflectance values for the four COM wavelengths [Rmin, Rmax (%) (λ in nm)] are: 33.9, 40.2 (471.1); 32.5, 38.9 (548.3), 31.6, 38.0 (586.6); and 29.8, 36.5 (652.3). Electron microprobe analysis gave (in wt %, average of 5 spot analyses): Cu 0.76 (2), Ag 8.39 (10), Mn 3.02 (7), Pb 24.70 (25), As 9.54 (12), Sb 28.87 (21), S 24.30 (18), total 99.58 (23).
    [Show full text]
  • The Crystal Structure of Valentinite (Orthorhombic Sb203y). by M
    1 The Crystal Structure of Valentinite (Orthorhombic Sb203Y). By M. J. Buerger and Sterling B. Hendricks, Mineralogical Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A., and Bureau of Chemistry and Soils, United States De- partment of Agriculture, Washington, D.C., U.S.A. Table of Contents. Abstract . i Introduction 2 Material . 3 Space Pattern Characteristics. 4 Method 4. Photographs 4. Centrosymmetrical point-group 4. Space lattice type 5. Space group 6. Unit cell 6. Possible Structures 7 Reflection Intensities 7 Location of Antimony Atoms. 8 Elimination of incorrect antimony equipoint combinations 8. Antimony parameters i2. Locationof Oxygen Atoms. 1.4 Method of location i4. Elimination of certain incorrect oxygen equipoint combinations and determination of oxygen y parameters i5. Determination of oxygen x parameters i8. Physically likely oxygen z and u parameters 22. Final Parameters . 23 Remarks on the Valentinite Strueturc. 25 Abstract. Natural valentinite from Su Suergiu, Sardinia, and also artificial valentinite made by subliming chemically pure Sb20a above its inversion point, havc been studied by thc W ei13en berg method. The structure has been completely and uniquely determined. The three symmetry planes indicated by W ei13en bcrg symmetry study confirm the orthorhom bic charaeter of this crystal. These all prove to be glide planes, which per- mits a unique determination of the space group. An intensive intensity study has been made resulting in a unique determination of the correct antimony equipoint com- bination and all antimony parameters, and a unique determination of the oxygen equipoint combination and oxygen x and y parameters. The only parameters remaining undetermined by direct intensity deduction are the two which fix the elevations of the two kinds of oxygen atoms.
    [Show full text]
  • New Discoveries of Rare Minerals in Montana Ore
    New discoveries of rare Au and Ag minerals in some Montana ore deposits Chris Gammons Geological Engineering, Montana Tech • Butte • McDonald Meadows • Virginia City District • Elkhorn (Boulder) District Butte • Produced over 600 million oz of silver • 2nd in U.S. to Couer d’Alene district ID • Produced roughly 3 million oz of gold • 2nd in Montana to Golden Sunlight Mine Mining Engineering, Web Exclusive 2016 Mineral (group) Formula Guilbert & Ziehen, 1964 This study HYPOGENE Argentite Ag2SXX Pearceite‐polybasite (Ag,Cu)16(As,Sb)2S11 XX Proustite‐pyrargyrite Ag3(As,Sb)S3 XX Stephanite Ag5SbS4 X Andorite PbAgSb3S6 X Stromeyerite AgCuS X X Ag‐tetrahedrite (Ag,Cu)12Sb4S13 XX Furutobeite (Cu,Ag)6PbS4 X Larosite (Cu,Ag)21(Pb,Bi)2S13 X Matildite AgBiS2 X Jalpaite Ag3CuS2 X Electrum AgAu X Petzite Ag3AuTe2 X Hessite Ag2Te X Empressite (?) AgTe X SUPERGENE Acanthite Ag2SXX Silver Ag X X Cerargyrite AgCl X furotobeite: (Cu,Ag)6PbS4 bornite furutobeite bornite stromeyerite + chalcocite furutobeite Mt. Con mine (AMC # 591) larosite: (Cu,Ag)21(Pb,Bi)2S13 stromeyerite larosite wittichenite Cu3BiS3 strom mawsonite Cu6Fe2SnS8 chalcocite pyrite pyrite bornite MT. Con 5933 Occurrences of furutobeite and larosite: Furutobeite Larosite • None in U.S. • None in U.S. • < 5 locations world‐wide • Butte = 3rd (?) locality • Type locality = Furutobe world‐wide mine, Japan (Kuroko‐type VMS) Fred Larose Early prospector in Cobalt silver camp, Ontario jalpaite: Ag3CuS2 Barite Wittichenite Cu3BiS3 Jalpaite Bornite Jalpaite AMC 4756 Anselmo Mine EPMA‐BSE image Goldfieldite Cu10Te 4S13 Bi‐Cu‐Se‐telluride Tennantite or enargite Emplectite: CuBiS2 Bi‐Cu‐Se‐telluride Hessite (Ag2Te) Empressite (AgTe) St.
    [Show full text]
  • Mineralogy of the Silver King Deposit, Omeo, Victoria
    CSIRO Publishing The Royal Society of Victoria, 129, 41–52, 2017 www.publish.csiro.au/journals/rs 10.1071/RS17004 MINERALOGY OF THE SILVER KING DEPOSIT, OMEO, VICTORIA William D. Birch Geosciences, Museums Victoria GPO Box 666, Melbourne, Victoria 3001, Australia Correspondence: [email protected] ABSTRACT: The Silver King mine (also known as Forsyths) operated very intermittently between about 1911 and the late 1940s on Livingstone Creek, near Omeo, in northeastern Victoria. The deposit consists of six thin and discontinuous quartz lodes that are variably mineralised. Assays of up to 410 ounces of silver per ton were obtained but there are only a few recorded production figures. Examination of representative ore samples shows that the main silver-bearing minerals in the primary ore are pyrargyrite, freibergite, andorite and the rare sulphosalt zoubekite, which occur irregularly with pyrite, arsenopyrite, galena and sphalerite. Phase assemblage data indicate that crystallisation occurred over an interval from about 450°C to less than 250°C, with the silver-bearing minerals crystallising at the lowest temperatures. The lodes were formed by the emplacement of hydrothermal solutions into fractures within the Ensay Shear Zone during the Early Devonian Bindian Orogeny. There are similarities in mineralisation and timing of emplacement between the Silver King lodes and the quartz-reef-hosted Glen Wills and Sunnyside goldfields 35‒40 km north of Omeo. Keywords: Silver King mine, Omeo, Victoria, hydrothermal, pyrargyrite, freibergite, andorite, zoubekite While silver is found in varying proportions alloyed with Creek. Samples submitted by Mr Forsyth to the Geological gold across Victoria, no deposits have been economically Survey laboratory for assay yielded grades of up to 410 mined purely for their silver contents alone.
    [Show full text]
  • Andorite VI): Pbagsb3s6
    Zeitschrift fUr Kristallographie 180, 141 - 150 (1987) (Q by R. Olden bourg Verlag, Munchen 1987 - 0044-2968/87 $3.00+0.00 The crystal structure of senandorite (andorite VI): PbAgSb3S6 Haruo Sawada Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan Isao Kawada * National Institute for Research in Inorganic Materials, Namiki 1, Sakura, Niihari, Ibaragi 305, Japan Erwin Hellner Fachbereich Geowissenschaften, Universitiit, Lahnberge, D-3550 Marburg, Federal Republic of Germany and Masayasu Tokonami Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan Received: February 2,1987 Crystal structure I Senandorite I Andorite Abstract.The crystal structure of senandorite (andorite VI) was determined taking into account the results of substructure analysis. All Sb atoms form trigonal pyramids, each with three S atoms. All of these pyramids participate in forming two types of polymerized Sb-S units; one, an Sb14SZ8group extended along the c axis; the other, an isolated SbzS4 group. Six non-equivalent Ag atoms each form deformed octahedra with sixS atoms. Three of these sites have four short Ag - S bonds tetrahedrally arranged. Sulphur atoms that bridge SbS3 pyramidal groups do not enter * Deceased Correspondence to he sent to: Haruo Sawada, Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan. 142 H. Sawada, I. Kawada, E. Hellner and M. Tokonami the tetrahedral AgS4 coordination, which is attributed to the steric diffi- culties encountered. Introduction The andorite series represents a structurally related series of sulphosalts minerals which crystallize in the monoclinic or orthorhombic systems hav- ing orthogonal or nearly orthogonal lattice constants of a = 13.0, b = 19.2, c = (4.3 x n) A, with n = 2, 4,6, or 24.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • New Mineral Names*
    ---- -- American Mineralogist, Volume 70, pages 214-221, 1985 NEW MINERAL NAMES* PETE J. DUNN, GEORGE Y. CHAO, MICHAEL FLEISCHER, JAMES A. FERRAIOLO, RICHARD H. LANGLEY, ADOLF PAaST, AND JANET A. ZILCZER Bulachlte* (RE1.7tFeij:1i5 Tho.03Po.01h:=I.80 C5.15015.95 F 1.94,(Ba2.47SrO.02Cao.06 K. Walenta (1983) Bulachite, a new aluminum arsenate mineral Nao.3s~.07h:-3.00 (RE1.63Feij~ Tho.02AIo.01h:-1.70C5.23015.ssF2.56 and (Ba2.53SrO.03CaO.t3Nao.24Ko.07h:-3.00 (REt.66 Tho.02Po.os from Neubulach in the northern Black Forest. Der Aufschluss, 34,445-451 (in German). Alo.01h:- J.70C4.96015.66F1.SS,or ideally Ba3Ce2(C03hF2' The min- erai dissolves readily in dilute HCI and in other strong inorganic Chemical analysis gave Ah03 37.2, AS205 39.1 and H20 (by acids. weight loss) 25.5, sum 101.8%, leading to the idealized formula Weissenberg photographs, four-circle single-crystal diffrac- Ah(As04)(OHh . 3H20. Bulachite is easily soluble in HCII: I, tometry and electron diffraction show the mineral to be mono- less easily in HN03 I: I. clinic, C2/m, Cm or C2, a = 21.4256, b = 5.0348, c = 13.2395A, Dimensions of the orthorhombic unit cell, as determined from (3= 94.613°. There is a pronounced rhombohedral subcell with a' an indexed X-ray powder diffraction pattern, are: a 15.53, b = 5.11, c' = 9.8A, similar to the subcell of huanghoite (Am. 17.78, c 7.03A, Z = 10, D (meas.) 2.60, (calc.) 2.55. The Mineral., 48, 1179, 1963).
    [Show full text]
  • THE Mn ISOTYPE of ANDORITE . and UCHUCCHACUAITE
    185 The Canadian MineraLogist Vol. 32, pp. 185-188(1994) THEMn ISOTYPEOF ANDORITE . AND UCHUCCHACUAITE HTIIFANG Lru axo LUKE L.Y. CHANG Depamtrcntof Geology,University of MaryIand"College Park Maryland20742, U.S.A. ';. CHARLES R. KNOWLES Idaho Geological Suney, Moscow, Idaha 83843, U.S.A. Alsrnasr Phaserelations in the systemAgrS-MnS-SbrS3 were studiedbetween 300' and 500"C using evacuatedand sealedglass capsules.Two ternaryphases, Ag2Mn Sb6S12(Ag2S.2MnS.3Sb2S3) and Ag1.a1Mn .r2sb5.65sl2 (Ag2S'4MnS'4Sb2S3) are stable in the system,and both form equilibrium assemblageswith stibnite and alabandite.The phaseAg2Mn2Sb6S12 is a Mn isotype of andorite,with a 12.19(l),, 19.58(1)and c 4.00(l) A. The limits of Pb-for-Mnsubstitution along the join andoriteand its Mn isotype,Agr@br-fln )rSb6S12,are 0.40 ) x ) 0.95. Uchucchacuaiteis readily synthesizedfrom its reportedcomposition AgMnPir;Sb5S;;.tt iris an ina,ili6-rype structue and calculatedunit-cell dimensioni a 13.08(1),b 19.466), andc 4.27Q) A. Uchucchacuaiteforms a completesolid-solution series with andorite,whereas the solid-solutionis incompletebetween uchucchacuaiteand the Mn isotypeof andorite. Keywords:andorite, Mn isotype,uchucchacuaite, solid-solution series. Sovruanr Les relationsde phasesdans le systbmeAgrS-MnS-Sb2S3 ont fait l'objet d'6tudesentre 300oet 500'C par synthdsesdans des ampoulesde verre 6vacudeset scelldes.Deux phasesternaires, Ag2Mn2Sb6S12 (Ag2S'2MnS'3Sb2S3) et Ag1.a1Mn2.s2Sb5.65S12(Ag2S.4MnS.4Sb2S3) sont stablesdans le systlme;les deux d6finissentdes assemblagesi 1'6quilibre avecstibine et alabandite.La compositionAg2Mn2Sb6S12 serait I'isofype manganiferede l'andorite; sesparambtres rdticulaires sonta 1.2.79(l),, 19.58(1)and c 4.00(1)A.
    [Show full text]
  • Valentinite and Colloform Sphalerite in Epithermal Deposits from Baia Mare Area, Eastern Carpathians
    minerals Article Valentinite and Colloform Sphalerite in Epithermal Deposits from Baia Mare Area, Eastern Carpathians Gheorghe Damian 1,2, Andrei Buzatu 2, Ionut Andrei Apopei 2,* , Zsolt László Szakács 1 , 1,3 1 2 Ioan Denut, , Gheorghe Iepure and Daniel Bârgăoanu 1 North University Centre of Baia Mare, Technical University of Cluj-Napoca, 430083 Baia Mare, Romania; [email protected] (G.D.); [email protected] (Z.L.S.); [email protected] (I.D.); [email protected] (G.I.) 2 Department of Geology, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Ias, i, 700505 Ias, i, Romania; [email protected] (A.B.); [email protected] (D.B.) 3 County Museum of Mineralogy, “Victor Gorduza”, 430212 Baia Mare, Romania * Correspondence: [email protected] Received: 9 December 2019; Accepted: 26 January 2020; Published: 30 January 2020 Abstract: Valentinite forms through the alteration of stibnite in sulphide deposits. Colloform sphalerite is a widespread mineral in low-temperature deposits, particularly those of the Mississippi-Valley type. We identified valentinite and colloform sphalerite in hydrothermal deposits occurring in the Baia Mare area. The Baia Mare metallogenic district of Neogene age occurs in the northwestern part of the Neogene volcanic chain within the Eastern Carpathians. The Neogene volcanism from Baia Mare area is related to the subduction processes of the East European plate under two microplates, Alcapa and Tisza-Dacia/Tisia, in the post-collisional compressive phase. We have identified valentinite in the Dealul Crucii and Baia Sprie deposits, associated with other epithermal minerals, in the absence of the stibnite. Valentinite is deposited in the final phase of the epithermal process after calcite and manganese-bearing calcite.
    [Show full text]