Penicillamine/Pentetic Acid 1459

Total Page:16

File Type:pdf, Size:1020Kb

Penicillamine/Pentetic Acid 1459 Penicillamine/Pentetic Acid 1459 In the management of lead poisoning, penicillamine ineffective and any benefit appears to be offset by the high inci- slowly, but is usually complete if treatment is started early may be given in doses of 1 to 1.5 g daily in divided dence of adverse effects.1,2 enough, and a normal life expectancy can be achieved. However, 1. James OFW. -Penicillamine for primary biliary cirrhosis. Gut once irreversible organ damage such as liver cirrhosis has oc- doses until urinary lead is stabilised at less than 1985; 26: 109–13. curred, treatment can only prevent further deterioration; those 500 micrograms/day. Children and the elderly may be 2. Gong Y, et al. D-penicillamine for primary biliary cirrhosis. presenting with end-stage liver disease do not benefit from cop- given 20 mg/kg daily in divided doses. Available in The Cochrane Database of Systematic Reviews; Is- per-reducing therapy, and liver transplantation is necessary (al- sue 4. Chichester: John Wiley; 2004 (accessed 04/04/06). though successful medical treatment has been reported in chil- In cystinuria, doses of penicillamine are adjusted ac- Retinopathy of prematurity. Penicillamine has been investi- dren). The drugs used to reduce copper concentrations in the cording to cystine concentrations in the urine. For the gated for the prophylaxis of retinopathy of prematurity (p.1994) treatment of Wilson’s disease are penicillamine, trientine, and treatment of cystinuria and cystine calculi, the dose is in infants considered to be at risk, and a systematic review of 2 zinc. Ammonium tetrathiomolybdate, an investigational drug, such studies considered that there was evidence for a reduced may also be used. usually in the range of 1 to 4 g daily in divided doses; 1 incidence of acute retinopathy. Further studies were considered Penicillamine reduces copper concentrations in several ways. Its a suggested dose for children is 30 mg/kg daily in di- justified, with careful attention to possible adverse effects. vided doses. For the prevention of cystine calculi, low- main action is to chelate circulating copper, which is then excret- 1. Phelps DL, et al. D-Penicillamine for preventing retinopathy of ed in the urine. In addition, penicillamine reduces the affinity of er doses of 0.5 to 1 g at bedtime may be given. An ad- prematurity in preterm infants. Available in The Cochrane Data- copper for proteins and polypeptides, allowing removal of cop- equate fluid intake is essential to maintain urine flow base of Systematic Reviews; Issue 1. Chichester: John Wiley; 2001 (accessed 04/10/05). per from tissues. It also induces hepatic synthesis of metal- when penicillamine is used for cystinuria. lothionein, a protein that combines with copper to form a non- Rheumatoid arthritis. Penicillamine is one of a diverse group toxic product. Trientine is a less potent copper chelator than pen- In the treatment of severe active rheumatoid arthri- of disease-modifying antirheumatic drugs that have been used in icillamine; it competes for copper bound to serum albumin and tis, an initial dose of penicillamine 125 to 250 mg daily rheumatoid arthritis (p.11) in an attempt to suppress the rate of increases copper excretion. Zinc induces synthesis of metal- is increased gradually by the same amount at intervals cartilage erosion or alter the course of the disease. However, ear- lothionein in the intestine so that absorption of copper from the ly enthusiasm for penicillamine has been tempered by a high in- gastrointestinal tract is blocked. It is usually given as the acetate of 4 to 12 weeks. Remission is usually achieved with 1 cidence of adverse effects. During long-term therapy as many as as this form is less irritating to the stomach than the sulfate. Am- maintenance doses of 500 to 750 mg daily in divided 50% of patients taking penicillamine have been reported to stop monium tetrathiomolybdate forms a complex with protein and doses, but up to 1.5 g daily may be required. Improve- treatment because of adverse effects.2 Low doses of penicilla- copper. When it is given with food it blocks the intestinal absorp- ment may not occur for several months; US licensed mine to reduce the incidence of adverse effects have been tried tion of copper, and when taken between meals it combines with product information suggests that penicillamine should and while doses as low as 125 mg daily have been claimed to be albumin- and caeruloplasmin-bound copper. effective in some patients, a 36-week multicentre double-blind CHOICE OF DRUG. Penicillamine is generally regarded as the drug be discontinued if there is no response after treatment study3 involving 225 patients concluded that a dose of penicilla- for 3 to 4 months with 1 to 1.5 g daily; in the UK, a trial of choice for the initial management of Wilson’s disease as it pro- mine 500 mg daily was only slightly more effective than place- duces a rapid reduction in copper levels. However, it may initial- bo. A dose of 125 mg daily was not significantly different from for 12 months is suggested. After remission has been ly exacerbate neurological symptoms (possibly due to transiently either the 500-mg dose or placebo. However, a 5-year open sustained for 6 months an attempt may be made grad- 4 increased brain and blood copper concentrations) and some prac- study comparing penicillamine in doses up to 500 mg daily with titioners therefore suggest starting with zinc; zinc is less suitable ually to reduce the dose by 125 to 250 mg daily every hydroxychloroquine, sodium aurothiomalate, or auranofin found 3 months but relapse may occur. Lower doses may be in those requiring rapid reduction of copper levels as it has a slow penicillamine to be as effective as the other drugs and well toler- onset of action. Trientine, which may also exacerbate neurologi- required in the elderly who may be more susceptible to ated, with 53% of the patients randomised to penicillamine still cal symptoms, is principally used in patients intolerant of peni- developing adverse effects. Initial doses of 125 mg receiving it at 5 years, as opposed to about 30 to 35% of those cillamine. Ammonium tetrathiomolybdate is under investigation daily are recommended, gradually increased to a maxi- randomised to other drugs. for the initial reduction of copper levels; it may be particularly 1. Suarez-Almazor ME, et al. Penicillamine for treating rheuma- suitable for patients with neurological symptoms. mum of 1 g daily if necessary. In children the mainte- toid arthritis. Available in The Cochrane Database of Systematic nance dose is 15 to 20 mg/kg daily; a suggested initial Reviews; Issue 4. Chichester: John Wiley; 2000 (accessed Once a negative copper balance is achieved, maintenance thera- dose is 2.5 to 5 mg/kg daily increased gradually at 04/10/05). py must be continued for life. Penicillamine, trientine, and zinc 2. Moens HJB, et al. Longterm followup of treatment with -peni- are all used for maintenance treatment. Patients taking penicilla- 4-week intervals. cillamine for rheumatoid arthritis: effectivity and toxicity in re- mine are also given pyridoxine to prevent deficiency (see Pre- lation to HLA antigens. J Rheumatol 1987; 14: 1115–19. cautions, above). The adverse effects of penicillamine may be a In the management of chronic active hepatitis, peni- 3. Williams HJ, et al. Low-dose -penicillamine therapy in rheuma- cillamine may be given after liver function tests have toid arthritis: a controlled, double-blind clinical trial. Arthritis problem during long-term use and zinc, which has low toxicity, Rheum 1983; 26: 581–92. is often preferred. Zinc is also used in patients in the asympto- indicated that the disease has been controlled by corti- 4. Jessop JD, et al. A long-term five-year randomized controlled matic stage of the disease. costeroids. The initial dose is 500 mg daily in divided trial of hydroxychloroquine, sodium aurothiomalate, auranofin 1. Brewer GJ. Recognition, diagnosis, and management of Wil- doses, increased gradually over 3 months to 1.25 g dai- and penicillamine in the treatment of patients with rheumatoid son’s disease. Proc Soc Exp Biol Med 2000; 223: 39–46. arthritis. Br J Rheumatol 1998; 37: 992–1002. ly, while at the same time reducing the corticosteroid 2. Roberts EA, Schilsky ML. A practice guideline on Wilson dis- ease. Hepatology 2003; 37: 1475–92. dose. Scleroderma. Penicillamine affects the cross-linking of colla- gen,1 and observational studies2,3 have suggested that it may be 3. El-Youssef M. Wilson disease. Mayo Clin Proc 2003; 78: Acetylpenicillamine has been used in mercury poison- of benefit in scleroderma (p.1817), and perhaps in some visceral 1126–36. manifestations of systemic sclerosis. A randomised study4 com- 4. Merle U, et al. Clinical presentation, diagnosis and long-term ing. outcome of Wilson’s disease: a cohort study. Gut 2007; 56: paring a conventional dose of penicillamine (up to 1 g daily) with 115–20. Chronic active hepatitis. Penicillamine has been tried in a very low dose (125 mg on alternate days) found no difference 5. Ala A, et al. Wilson’s disease. Lancet 2007; 369: 397–408. chronic active hepatitis (p.1501) as an alternative to prolonged in outcome, but there were more adverse effects with the higher corticosteroid maintenance therapy once control of the disease is dose. Although the lower dose was not expected to be effective, Preparations achieved. The dose of penicillamine is increased over several the skin score improved significantly in both groups; however, BP 2008: Penicillamine Tablets; months to a suitable maintenance dose and, at the same time, the there was insufficient evidence to attribute this to use of peni- USP 31: Penicillamine Capsules; Penicillamine Tablets.
Recommended publications
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 22-Sep-2009 Revision Date 24-Jun-2020 Revision Number 4 1. Identification Product Name Diethylenetriaminepentaacetic acid Cat No. : AC114320000; AC114320010; AC114320050; AC114322500 CAS-No 67-43-6 Synonyms (Carboxymethylimino)bis(ethylenenitrilo)tetraacetic acid; DTPA; Pentetic acid Recommended Use Laboratory chemicals. Uses advised against Food, drug, pesticide or biocidal product use. Details of the supplier of the safety data sheet Company Fisher Scientific Company Acros Organics One Reagent Lane One Reagent Lane Fair Lawn, NJ 07410 Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number For information US call: 001-800-ACROS-01 / Europe call: +32 14 57 52 11 Emergency Number US:001-201-796-7100 / Europe: +32 14 57 52 99 CHEMTREC Tel. No.US:001-800-424-9300 / Europe:001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute Inhalation Toxicity - Dusts and Mists Category 4 Serious Eye Damage/Eye Irritation Category 2 Reproductive Toxicity Category 2 Specific target organ toxicity - (repeated exposure) Category 2 Inhalation Label Elements Signal Word Warning Hazard Statements Causes serious eye irritation Harmful if inhaled Suspected of damaging fertility or the unborn child May cause damage to organs through prolonged or repeated exposure ______________________________________________________________________________________________ Page 1 / 7 Diethylenetriaminepentaacetic acid Revision
    [Show full text]
  • Nitric Oxide Modulation of Interleukin-1Я-Evoked Intracellular
    The Journal of Neuroscience, December 15, 2000, 20(24):8980–8986 Nitric Oxide Modulation of Interleukin-1␤-Evoked Intracellular Ca2؉ Release in Human Astrocytoma U-373 MG Cells and Brain Striatal Slices Antonella Meini,1 Alberto Benocci,1 Maria Frosini,1 Gianpietro Sgaragli,1 Gianpaolo Pessina,2 Carlo Aldinucci,2 Gise` le Tchuisseu Youmbi,1 and Mitri Palmi1 1Istituto di Scienze Farmacologiche and 2Istituto di Fisiologia, Universita` di Siena, 53100 Siena, Italy Intracellular Ca 2ϩ mobilization and release into mammal CSF Ca 2ϩ release induced by 2.5 but not 10 ng/ml IL-1␤. Ruthenium plays a fundamental role in the etiogenesis of fever induced by red (50 ␮M) and, to a lesser extent, heparin (3 mg/ml) antagonized the proinflammatory cytokine interleukin-1␤ (IL-1␤) and other IL-1␤-induced Ca 2ϩ release, and both compounds administered pyrogens. The source and mechanism of IL-1␤-induced intracel- together completely abolished this response. Similar results were lular Ca 2ϩ mobilization was investigated using two experimental obtained in human astrocytoma cells in which IL-1␤ elicited a models. IL-1␤ (10 ng/ml) treatment of rat striatal slices preloaded delayed (30 min) increase in intracellular Ca 2ϩ concentration 45 2ϩ 2ϩ Ϯ with Ca elicited a delayed (30 min) and sustained increase ([Ca ]i ) (402 71.2% of baseline), which was abolished by 1 45 2ϩ (125–150%) in spontaneous Ca release that was potentiated mML-NAME. These data indicate that the NO/cGMP-signaling by L-arginine (300 ␮M) and counteracted by N-␻-nitro-L-arginine pathway is part of the intracellular mechanism transducing IL- 2ϩ methyl ester (L-NAME) (1 and 3 mM).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr
    US008158152B2 (12) United States Patent (10) Patent No.: US 8,158,152 B2 Palepu (45) Date of Patent: Apr. 17, 2012 (54) LYOPHILIZATION PROCESS AND 6,884,422 B1 4/2005 Liu et al. PRODUCTS OBTANED THEREBY 6,900, 184 B2 5/2005 Cohen et al. 2002fOO 10357 A1 1/2002 Stogniew etal. 2002/009 1270 A1 7, 2002 Wu et al. (75) Inventor: Nageswara R. Palepu. Mill Creek, WA 2002/0143038 A1 10/2002 Bandyopadhyay et al. (US) 2002fO155097 A1 10, 2002 Te 2003, OO68416 A1 4/2003 Burgess et al. 2003/0077321 A1 4/2003 Kiel et al. (73) Assignee: SciDose LLC, Amherst, MA (US) 2003, OO82236 A1 5/2003 Mathiowitz et al. 2003/0096378 A1 5/2003 Qiu et al. (*) Notice: Subject to any disclaimer, the term of this 2003/OO96797 A1 5/2003 Stogniew et al. patent is extended or adjusted under 35 2003.01.1331.6 A1 6/2003 Kaisheva et al. U.S.C. 154(b) by 1560 days. 2003. O191157 A1 10, 2003 Doen 2003/0202978 A1 10, 2003 Maa et al. 2003/0211042 A1 11/2003 Evans (21) Appl. No.: 11/282,507 2003/0229027 A1 12/2003 Eissens et al. 2004.0005351 A1 1/2004 Kwon (22) Filed: Nov. 18, 2005 2004/0042971 A1 3/2004 Truong-Le et al. 2004/0042972 A1 3/2004 Truong-Le et al. (65) Prior Publication Data 2004.0043042 A1 3/2004 Johnson et al. 2004/OO57927 A1 3/2004 Warne et al. US 2007/O116729 A1 May 24, 2007 2004, OO63792 A1 4/2004 Khera et al.
    [Show full text]
  • FDA Listing of Established Pharmacologic Class Text Phrases January 2021
    FDA Listing of Established Pharmacologic Class Text Phrases January 2021 FDA EPC Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: “(Drug) is a (FDA EPC Text Phrase) indicated for Active Moiety Name [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13.
    [Show full text]
  • (NSP15) Inhibitors: Repurposing FDA-Approved Drugs
    Potential SARS-CoV-2 Nonstructural Protein 15 (NSP15) Inhibitors: Repurposing FDA-Approved Drugs Jason Y Tang1, Igor F. Tsigelny2-4*, Jerry P. Greenberg2, Mark A. Miller2, Valentina L. Kouznetsova2,4 1REHS program, San Diego Supercomputer Center, UC San Diego, La Jolla, California, USA 2San Diego Supercomputer Center, UC San Diego, La Jolla, California., USA 3Department of Neurosciences, UC San Diego, La Jolla, California, USA 4BiAna. San Diego, California, USA *Corresponding author: UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA Email: [email protected] (Orcid ID: 0000-0002-7155-8947) Running Head: NSP-15 inhibitors as COVID-19 Drugs Word Count: 3743 1 Abstract Purpose: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths worldwide, pushing the urgent need for an efficient treatment. Nonstructural protein 15 (NSP15) is a promising target due to its importance for SARS-CoV-2’s evasion of the host’s innate immune response. Methods: Using the crystal structure of SARS-CoV-2 NSP15 endoribonuclease, we developed a pharmacophore model of the functional centers in the NSP15 inhibitor’s binding pocket. With this model, we conducted data mining of the conformational database of FDA-approved drugs. The conformations of these compounds underwent 3D fingerprint similarity clustering, and possible conformers were docked to the NSP15 binding pocket. We also simulated docking of random compounds to the NSP15 binding pocket for comparison. Results: This search identified 170 compounds as potential inhibitors of SARS-CoV-2 NSP15. The mean free energy of docking for the group of potential inhibitors were significantly lower than for the group of random compounds.
    [Show full text]
  • Analytical Methods for the Detection and Quantification of Adcs in Biological Matrices
    pharmaceuticals Review Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices Héloïse Cahuzac and Laurent Devel * Département Médicaments et Technologies pour la Santé (MTS), CEA, INRAE, SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-1-69-08-95-65 Received: 8 October 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Understanding pharmacokinetics and biodistribution of antibody–drug conjugates (ADCs) is a one of the critical steps enabling their successful development and optimization. Their complex structure combining large and small molecule characteristics brought out multiple bioanalytical methods to decipher the behavior and fate of both components in vivo. In this respect, these methods must provide insights into different key elements including half-life and blood stability of the construct, premature release of the drug, whole-body biodistribution, and amount of the drug accumulated within the targeted pathological tissues, all of them being directly related to efficacy and safety of the ADC. In this review, we will focus on the main strategies enabling to quantify and characterize ADCs in biological matrices and discuss their associated technical challenges and current limitations. Keywords: antibody–drug conjugates; pharmacokinetics and biodistribution; liquid chromatography coupled to mass spectrometry; ligand-binding assays; in vivo imaging; ex vivo autoradiography 1. Introduction Antibody–drug conjugates (ADCs) consist of a small-molecule drug (payload) covalently bound to a monoclonal antibody via a chemical linker. By merging the specific binding properties of antibodies to the potency of small molecules, ADCs are designed to selectively deliver cell-killing agents to targeted pathogenic tissues, while limiting systemic toxicity.
    [Show full text]
  • Combined Index to USP 41 and NF 36, Volumes 1–5
    Combined Index to USP 41 and NF 36 Abaca-Acety I-1 Combined Index to USP 41 and NF 36, Volumes 1–5 Page citations refer to the pages of Volumes 1, 2, 3, 4 and 5 of USP 41±NF 36. This index is repeated in its entirety in each volume. 1–2302 Volume 1 2303–4414 Volume 2 4415–5658 Volume 3 5659–6698 Volume 4 6699–8228 Volume 5 Numbers in angle brackets such as 〈421〉 refer to chapter numbers in the General Chapters section. and (salts of) chlorpheniramine, Acetate A dextromethorphan, and methyl, 5706 pseudoephedrine, oral powder Acetate buffer, 5676 Abacavir containing at least three of the TS, 5750 oral solution, 19 following, 47 Acetazolamide, 65 sulfate, 23 and (salts of) chlorpheniramine, for injection, 66 tablets, 20 dextromethorphan, and oral suspension, 68 and lamivudine tablets, 21 pseudoephedrine, oral solution tablets, 68 Abiraterone containing at least three of the Acetic acid, 5181, 5664 acetate, 24 following, 49 ammonium acetate buffer TS, 5750 acetate tablets, 26 and (salts of) chlorpheniramine, diluted, 5181, 5664, 5690 Absolute dextromethorphan, and double-normal (2 N), 5762 alcohol, 5666 pseudoephedrine, tablets containing at glacial, 69, 5664, 5697 ether, 5664 least three of the following, 51 glacial, TS, 5750, 5754 Absorbable chlorpheniramine maleate, and and hydrocortisone otic solution, 2062 dusting powder, 1457 dextromethorphan hydrobromide irrigation, 69 gelatin film, 1929 tablets, 53 metaphosphoric, TS, 5756 gelatin sponge, 1929 and codeine phosphate capsules, 55 otic solution, 70 surgical suture, 3901 and codeine phosphate
    [Show full text]
  • Combatting Wound Biofilm and Recalcitrance with a Novel Anti- Biofilm Hydrofiber Wound Dressing
    Accepted Manuscript Title: Combatting Wound Biofilm and Recalcitrance with a Novel Anti-biofilm Hydrofiber Wound Dressing Author: Philip G. Bowler David Parsons PII: S2213-9095(16)30020-9 DOI: http://dx.doi.org/doi:10.1016/j.wndm.2016.05.005 Reference: WNDM 79 To appear in: Received date: 6-5-2016 Accepted date: 9-5-2016 Please cite this article as: Philip G.Bowler, David Parsons, Combatting Wound Biofilm and Recalcitrance with a Novel Anti-biofilm Hydrofiber Wound Dressing, Wound Medicine http://dx.doi.org/10.1016/j.wndm.2016.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Title: Combatting Wound Biofilm and Recalcitrance with a Novel Anti- biofilm Hydrofiber Wound Dressing Authors: Philip G Bowler, MPhil David Parsons, PhD Address: ConvaTec GDC, First Avenue, Deeside Industrial Park, Deeside, Flintshire, UK, CH5 2NU Email/Correspondence: [email protected] 1 ABSTRACT Background: Biofilm is an impediment to wound healing as a consequence of its proven ability to impair epithelialization, granulation tissue formation and normal inflammatory processes, as well as protecting wound pathogens from antibiotics and antiseptics. With this in mind, a project was initiated to develop a combined anti-biofilm/antimicrobial technology that could be incorporated into a wound dressing to maximize effectiveness against wound pathogens existing in their predominant biofilm form.
    [Show full text]
  • Edta Ethylene Diamine Tetra Acetic Acid
    EDTA GENERAL Chelation is a chemical combination with a metal in complexes in which the metal is part of a ring. Organic ligand is called chelator or chelating agent, the chelate is a metal complex. The larger number of ring closures to a metal atom is the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. Monodentate ligands which have one coordinating atom like H 2O or NH 3 are easily broken apart by other chemical processes, whereas polydentate chelators, donating multiple binds to metal ion, provide more stable complexes. Chlorophyll, green plant pigment, is a chelate that consists of a central magnesium atom joined with four complex chelating agent (pyrrole ring). The molecular structure of the chlorophyll is similar to that of the heme bound to proteins to form hemoglobin, except that the latter contains iron(II) ion in the center of the porphyrin. Heme is an iron chelate. Chelation is applied in metal complex chemistry, organic and inorganic chemistry, biochemistry, and environment protection. It is used in chemotherapeutic treatments for metal poisoning. Chelating agents offers a wide range of sequestrants to control metal ions in aqueous systems. By forming stable water soluble complexes with multivalent metal ions, chelating agents prevent undesired interaction by blocking normal reactivity of metal ions. EDTA (ethylenediamine tetraacetate) is a good example of common chelating agent which have nitrogen atoms and short chain carboxylic groups.
    [Show full text]
  • Hemumurta Unhau
    HEMUMURTAUS 20170365883A1UNHAU ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2017/ 0365883 A1 Luski et al. ( 43) Pub . Date : Dec . 21 , 2017 ( 54 ) LITHIUM ION BATTERY ( 52 ) U . S . CI. CPC .. HOIM 10 / 4235 ( 2013 .01 ) ; HOIM 10 /0525 (71 ) Applicants :GM GLOBAL TECHNOLOGY ( 2013 .01 ) ; HOIM 2 / 1653 ( 2013 .01 ) ; HOIM OPERATIONS LLC , DETROIT , MI 2 / 166 (2013 .01 ) (US ) ; Bar - Ilan University , Ramat Gan ( IL ) ( 57 ) ABSTRACT (72 ) Inventors : Shalom Luski, Rehovot ( IL ) ; Doron Aurbach , Bnei Brak ( IL ) ; Bob R . A lithium ion battery includes a positive and a negative Powell, JR ., Birmingham , MI (US ) ; Ion electrode , and a nanoporous or microporous polymer sepa C . Halalay , Grosse Pointe Park , MI rator soaked in electrolyte solution and disposed between the (US ) ; Timothy J . Fuller, Pittsford , NY electrodes . At least two different chelating agents are (US ) ; Anjan Banerjee , West Bengal included and selected to complex with : i ) two or more State ( IN ) ; Baruch Ziv , Ramat -Gan different transition metal ions ; ii ) a transition metal ion in ( IL ) ; Yuliya Shilina , Bat Yam ( IL ) two or more different oxidation states ; or iii ) both i ) and ii ) . The at least two different selected chelating agents are to (21 ) Appl. No. : 15 / 186 , 526 complex with transition metal ions in a manner sufficient to (22 ) Filed : Jun . 19 , 2016 not affect movement of lithium ions across the separator during operation of the battery . The chelating agents are : Publication Classification dissolved or dispersed in the electrolyte solution ; grafted (51 ) Int . Cl. onto the polymer of the separator ; attached to the binder HOIM 10 /42 ( 2006 .
    [Show full text]
  • Overview of Role of Radionuclides in Scanning the Brain in Health and Disease
    Journal of Neurology & Stroke Overview of Role of Radionuclides in Scanning the Brain in Health and Disease Preface Review Article revolutionary technique called Computerised Axial Tomography Volume 6 Issue 4 - 2017 (CAT)When Scan GN in Hounsfield1972, it was announced thought that the nuclear development imaging ofwill a get relegated to the pages of history. Since then the world has witnessed the development of MRI, spiral CT, 3-D reconstruction Professor and Head of Anatomical Sciences, All Saints etc. Though the role of nuclear imaging has decreased with the University, St. Vincent and the Grenadines advent of these techniques, it still occupies a niche for itself which cannot be usurped. In this article radio-nuclide scans of the brain *Corresponding author: Sanjoy Sanyal, Professor and Head of Anatomical Sciences, Neuroscientist and Surgeon, Austin Pond Drive, Cary, North Carolina, NC 27519, USA, Email: Isotopeswill be briefly and reviewed. Imaging Received: October 14, 2016 | Published: April 17, 2017 Though radio-isotopes 73As (Arsenic), 197Hg and 203Hg (Mercury) have been used for brain scanning, Technitium pertechnetate (99mTc-pertechnetate) is most commonly used. Following intravenous (IV) injection its gamma ray emissions are Table 1: Radio-isotopes in brain scan. captured by a gamma camera. The scanned image may be seen on a digital screen or on a developed photographic plate, where 99mTcO (pertechnetate) 4 All space occupying lesions increased or decreased gamma emissions correspond to areas of 99mTc-DTPA (pentetate) ‘hot’
    [Show full text]
  • Dissolvine® DZ-P Pentetic Acid - Meets the Chemical Specification Requirements of the USP
    Product Data Leaflet Dissolvine® DZ-P Pentetic Acid - meets the chemical specification requirements of the USP Chemical Name Diethylenetriaminepentaacetic acid Chemical formula DTPA-H5 Structure O O HO C CH 2 CH2 C OH N CH CH CH 2 CH2 N 2 2 N HO C CH 2 CH2 CH2 C OH O C-OH O O Mol. Weight 393.4 CAS Number 67-43-6 Specifications Checkpoint Specification Units Method Identification (IR test) Passes test USP Assay as DTPA-H5 98.0 - 100.5 % USP Residue on ignition 0.2 max % USP Heavy metals as Pb 0.005 max % USP Iron 0.01 max % USP Nitrilotriacetic acid < 0.1 % USP Main Characteristics Dissolvine® DZ-P is a high purity sequestering agent, forming very stable water soluble complexes with polyvalent metal ions in a wide pH range. Solubility in water : approx. 5 g/l water (20°C) : approx. 13 g/l water (50°C) : approx. 48 g/l water (80°C) Addition of alkali hydroxide changes solubility considerably Bulk density untapped (poured) : approx. 500-700 kg/m3 Bulk density tapped : approx. 850-1050 kg/m3 Sequestering values for Dissolvine® DZ-P are approximately (theoretical calculated figures – mg metal ion / g DZ-P): ® Metal ion pH range Dissolvine DZ calcium 6 - 14 100 copper 2 - 14 160 ferric 1 - 11 140 magnesium 6 - 12 60 manganese 4 - 13 140 zinc 2 - 13 165 FPD 1201-07-4, Feb-2012 / Update 1 The information presented herein is true and accurate to the best of our knowledge, but without any guarantee unless explicitly given.
    [Show full text]