Estimating Sustainable Bycatch Rates for California Sea Lion Populations in the Gulf of California

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Sustainable Bycatch Rates for California Sea Lion Populations in the Gulf of California Contributed Paper Estimating Sustainable Bycatch Rates for California Sea Lion Populations in the Gulf of California JARED G. UNDERWOOD,∗‡ CLAUDIA J. HERNANDEZ CAMACHO,∗† DAVID AURIOLES-GAMBOA,† AND LEAH R. GERBER∗ ∗Ecology, Evolution and Environmental Science, School of Life Sciences, Arizona State University, College & University Drive, Tempe, AZ 85287-1501, U.S.A. †Centro Interdisciplinario de Ciencias Marinas-IPN, Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz BCS 23096, Mexico´ Abstract: Commercial and subsistence fisheries pressure is increasing in the Gulf of California, Mexico. One consequence often associated with high levels of fishing pressure is an increase in bycatch of marine mammals and birds. Fisheries bycatch has contributed to declines in several pinniped species and may be affecting the California sea lion (Zalophus californianus) population in the Gulf of California. We used data on fisheries and sea lion entanglement in gill nets to estimate current fishing pressure and fishing rates under which viable sea lion populations could be sustained at 11 breeding sites in the Gulf of California. We used 3 models to estimate sustainable bycatch rates: a simple population-growth model, a demographic model, and an estimate of the potential biological removal. All models were based on life history and census data collected for sea lions in the Gulf of California. We estimated the current level of fishing pressure and the acceptable level of fishing required to maintain viable sea lion populations as the number of fishing days (1 fisher/boat setting and retrieving 1 day’s worth of nets) per year. Estimates of current fishing pressure ranged from 101 (0–405) fishing days around the Los Machos breeding site to 1887 (842–3140) around the Los Islotes rookery. To maintain viable sea lion populations at each site, the current level of fishing permissible could be augmented at some sites and should be reduced at other sites. For example, the area around San Esteban could support up to 1428 (935–2337) additional fishing days, whereas fishing around Lobos should be reduced by at least 165 days (107–268). Our results provide conservation practitioners with site-specific guidelines for maintaining sustainable sea lion populations and provide a method to estimate fishing pressure and sustainable bycatch rates that could be used for other marine mammals and birds. Keywords: bycatch, California sea lion, fisheries, gill-net entanglement, Gulf of California, population viability, Zalophus californianus Estimacion´ de Tasas de Captura Incidental Sustentables para Poblaciones de Lobos Marinos en el Golfo de California Resumen: La presion´ de las pesquer´ıas comerciales y de subsistencia esta´ aumentando en el Golfo de Califronia, M´exico. El incremento de la captura incidental de mam´ıferos y aves marinas a menudo es una consecuencia asociada con altos niveles de presion´ de pesca. La captura incidental de pesquer´ıas ha contribuido a las declinaciones de varias especies de pin´ıpedos y puedee estar afectando a la poblacion´ de lobo marino de California (Zalophus californianus) en el Golfo de California. Utilizamos datos sobre pesquer´ıas y enmallamiento de lobos marinos en redes agalleras para estimar la presion´ de pesca actual y las tasas de pesca bajo las que se pudieran sostener poblaciones de leon´ marino en 11 sitios de reproduccion´ en el Golfo de California. Utilizamos 3 modelos para estimar tasas de captura incidental sustentables: un modelo de crecimiento poblacional simple, un modelo demografico,´ y una estimacion´ de la remocion´ biologica´ potencial. Todos los modelos se basaron en datos de la historia de vida y de censos de lobos marinos en el Golfo de California. Estimamos el nivel de la presion´ de pesca actual y el nivel de pesca aceptable requerido para mantener poblaciones viables de lobos marinos como el numero´ de d´ıas de pesca (1 pescador/barco ‡email [email protected] Paper submitted December 6, 2006; revised manuscript accepted November 5, 2007. 701 Conservation Biology, Volume 22, No. 3, 701–710 C 2008 Society for Conservation Biology DOI: 10.1111/j.1523-1739.2008.00919.x 702 Fisheries Bycatch and Sea Lions colocando y recuperando el valor de 1 d´ıa de redes) por ano.˜ Las estimaciones de la presion´ de pesca actual variaron entre 101 (9-405) d´ıas de pesca alrededor del sitio de reproduccion´ Los Machos y 1887 (842–3140) alrededor de Los Islotes. Para mantener poblaciones viables de lobos marinos en cada sitio, el nivel de pesca permisible actual podr´ıa ser aumentado en algunos sitios y deber´ıa ser reducido en otros. Por ejemplo, el area´ alrededor de San Esteban podr´ıa soportar hasta 1428 (935–2337) d´ıas de pesca adicionales, mientras la pesca alrededor de Lobos deber´ıa ser reducida en por lo menos 165 (107–268) d´ıas. Nuestros resultados proporcionar a los profesionales de la conservacion´ directrices espec´ıficas para cada sitio para mantener poblaciones sustentables de leones marinos y proporcionan un m´etodo para estimar la presion´ de pesca y las tasas de captura incidental sustentables que podr´ıan se utilizadas en otros mam´ıferos y aves marinas. Palabras Clave: captura incidental, lobo marino de California, enmallamiento en red agallera, Golfo de Califor- nia, viabilidad poblacional, Zalophus californianus Introduction tion size after only 3 generations (15 years) was >65% for 8 of the 11 rookeries used in the analysis. Because of Obtaining accurate information on fisheries-related by- the uncertainty associated with census data and subse- catch for marine mammals and birds is a global chal- quent population-growth rate estimates, it is difficult to lenge in marine conservation biology (Read et al. 2006). ascertain the true status of this population. Here we present a method for estimating current fish- Recent reports estimate that 30,000 fishers in 18,000 ing pressure and sustainable bycatch rates based on en- boats currently fish in the Gulf and that unregulated gill- tanglement data and life history parameters for marine net fishing has doubled in the last decade and continues species (pinnipeds, cetaceans, or birds). This method is to grow (CONANP 2006). The type of fishing that most illustrated with the California sea lion (Zalophus califor- commonly conflicts with California sea lions is the set nianus) population in the Gulf of California (Gulf) as a gill-net fishery (Julian & Beeson 1998; Aurioles-Gamboa case study. Using this method, an estimate of incidental et al. 2003). In fact, the threat of mortality due to inci- catch and the relative intensity of fishing pressure can be dental catch in gill nets is one of the gravest problems approximated indirectly from the number of entangled facing sea lions in this area (Zavala-Gonzalez & Mellink animals recorded. Sea lion entanglement rates are rela- 1997; Programa de Manejo, Islas del Golfo de California tively straightforward to document, and information can 2000; Aurioles-Gamboa et al. 2003). Although the direct be collected quickly. Assuming that the number of entan- impact of gill-net fishing on the sea lion population in the gled individuals indicates relative fishing pressure, the Gulf is unknown, incidental catch in gill and other fishing use of site-specific data on entanglement and life history nets has contributed to population declines in northern parameters permits one to estimate the level of allowable fur seals (Callorhinus ursinus), harbor seals (Phoca vi- fishing pressure. tulina stejnegeri), and harp seals (P. groenlandica)and The California sea lion is a polygynous pinniped that is at least partially responsible for declines in Steller sea breeds on islands of the eastern Pacific Ocean from British lions (Eumetopias jubatus) (Fowler 1987; Woodley & Columbia in Canada to Las Islas Mar´ıas in Mexico and in Lavigne 1991). In the Gulf, recent observations indicate the Gulf (Odell 1981). After an apparent recovery from an increased rate of entanglement in the northern Gulf exploitation in the 19th and 20th centuries, the current (Zavala-Gonzalez & Mellink 1997). Increases in entangle- status of California sea lions in the Gulf is uncertain. ment almost certainly signal an elevated rate of mortality Szteren et al. (2006) compared the most recent survey due to incidental catch, which may be one of the prin- (24,062–31,159) with a 1994 census (31,393 individuals) ciple reasons why sea lion populations in the northern and found an approximate 20% decline between 1994 to Gulf are in decline. 2004. The most recent census data at the rookery level We devised a method to estimate the current level indicate that increases in several large breeding colonies of fishing pressure and a sustainable bycatch rate are masking rapid declines in several smaller rookeries for 11 breeding colonies found throughout the Gulf. (Szteren et al. 2006). Although census numbers indicate a We assumed movement was limited between breeding declining population, estimates of the population-growth colonies. Although movement between rookeries is pos- rate for the Gulf seem to indicate a stable to slightly in- sible and occasionally does occur, the level of movement creasing population (Gonzalez-Suarez et al. 2006; Szteren between rookeries is thought to be minimal on the ba- et al. 2006). Another way to assess the status of the pop- sis of genetic and mark-recapture studies in the Gulf ulation is to estimate the probability of a reduction in (Maldonado et al. 1995; Gonzalez-Suarez et al. 2006; population size over time. Gonzalez-Suarez et al. (2006) Young et al. 2007; Hernandez-Camacho et al., 2008a). found that the probability of a 30% reduction in popula- This method for estimating sustainable bycatch rates can Conservation Biology Volume 22, No. 3, 2008 Underwood et al. 703 help managers in the Gulf establish a fishing strategy that will allow sea lion populations in the region to persist. These methods could also be applied to other marine bird and mammal species.
Recommended publications
  • MINNESOTA MUSTELIDS Young
    By Blane Klemek MINNESOTA MUSTELIDS Young Naturalists the Slinky,Stinky Weasel family ave you ever heard anyone call somebody a weasel? If you have, then you might think Hthat being called a weasel is bad. But weasels are good hunters, and they are cunning, curious, strong, and fierce. Weasels and their relatives are mammals. They belong to the order Carnivora (meat eaters) and the family Mustelidae, also known as the weasel family or mustelids. Mustela means weasel in Latin. With 65 species, mustelids are the largest family of carnivores in the world. Eight mustelid species currently make their homes in Minnesota: short-tailed weasel, long-tailed weasel, least weasel, mink, American marten, OTTERS BY DANIEL J. COX fisher, river otter, and American badger. Minnesota Conservation Volunteer May–June 2003 n e MARY CLAY, DEMBINSKY t PHOTO ASSOCIATES r mammals a WEASELS flexible m Here are two TOM AND PAT LEESON specialized mustelid feet. b One is for climb- ou can recognize a ing and the other for hort-tailed weasels (Mustela erminea), long- The long-tailed weasel d most mustelids g digging. Can you tell tailed weasels (M. frenata), and least weasels eats the most varied e food of all weasels. It by their tubelike r which is which? (M. nivalis) live throughout Minnesota. In also lives in the widest Ybodies and their short Stheir northern range, including Minnesota, weasels variety of habitats and legs. Some, such as badgers, hunting. Otters and minks turn white in winter. In autumn, white hairs begin climates across North are heavy and chunky. Some, are excellent swimmers that hunt to replace their brown summer coat.
    [Show full text]
  • Food Habits of Black Bears in Suburban Versus Rural Alabama
    Food Habits of Black Bears in Suburban versus Rural Alabama Laura Garland, Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL 36849 Connor Ellis, 18832 #1 Gulf Boulevard Indian Shores, FL 33785 Todd Steury, Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL 36849 Abstract: Little is known about the food habits of black bears (Ursus americanus) in Alabama. A major concern is the amount of human influence in the diet of these bears as human and bear populations continue to expand in a finite landscape and bear-human interactions are increasing. To better understand dietary habits of bears, 135 scats were collected during late August to late November 2011–2014. Food items were classified into the cat- egories of fruit, nuts/seeds, insects, anthropogenic, animal hairs, fawn bones, and other. Plant items were classified down to the lowest possible taxon via visual and DNA analysis as this category composed the majority of scat volumes. Frequency of occurrence was calculated for each food item. The most commonly occurring foods included: Nyssa spp. (black gum, 25.2%), Poaceae family (grass, 24.5%), Quercus spp. (acorn, 22.4%), and Vitis spp. (muscadine grape, 8.4%). Despite the proximity of these bear populations to suburban locations, during our sampling period we found that their diet primarily comprised vegetation, not anthropogenic food; while 100% of scat samples contained vegetation, only 19.6% of scat samples contained corn and no other anthropogenic food sources were detected. Based on a Fisher’s exact test, dietary composition did not differ between bears living in subur- ban areas compared to bears occupying more rural areas (P = 0.3891).
    [Show full text]
  • FISHER Pekania Pennanti
    WILDLIFE IN CONNECTICUT WILDLIFE FACT SHEET FISHER Pekania pennanti Background J. FUSCO © PAUL In the nineteenth century, fishers became scarce due to forest logging, clearing for agriculture, and overexploitation. By the 1900s, fishers were considered extirpated from the state. Reforestation and changes in land-use practices have restored the suitability of the fisher’s habitat in part of its historic range, allowing a population to recolonize the northeastern section of the state. Fishers did not recolonize suitable habitat in northwestern Connecticut, since the region was isolated from a source population. Fishers were rare in western Massachusetts, and the developed and agricultural habitats of the Connecticut River Valley were a barrier to westward expansion by fishers in northeastern Connecticut. A project to reintroduce this native mammal into northwestern Connecticut was initiated by the Wildlife Division in 1988. Funds from reimbursement of trapping wild turkeys in Connecticut for release in Maine were used to purchase fishers caught by cooperating trappers in New Hampshire and Vermont. In what is termed a "soft release," fishers were penned and fed at the release site for a couple of weeks prior to being released. Through radio and snow tracking, biologists later found that the fishers that were released in northwestern Connecticut had high survival rates and successfully reproduced. As a result of this project, a viable, self-sustaining population of this native mammal is now established in western Connecticut. Fishers found throughout eastern Connecticut are a result of natural range expansion. In 2005, Connecticut instituted its first modern day regulated trapping season for fishers. Most northern states have regulated fisher trapping seasons.
    [Show full text]
  • 2021 Fur Harvester Digest 3 SEASON DATES and BAG LIMITS
    2021 Michigan Fur Harvester Digest RAP (Report All Poaching): Call or Text (800) 292-7800 Michigan.gov/Trapping Table of Contents Furbearer Management ...................................................................3 Season Dates and Bag Limits ..........................................................4 License Types and Fees ....................................................................6 License Types and Fees by Age .......................................................6 Purchasing a License .......................................................................6 Apprentice & Youth Hunting .............................................................9 Fur Harvester License .....................................................................10 Kill Tags, Registration, and Incidental Catch .................................11 When and Where to Hunt/Trap ...................................................... 14 Hunting Hours and Zone Boundaries .............................................14 Hunting and Trapping on Public Land ............................................18 Safety Zones, Right-of-Ways, Waterways .......................................20 Hunting and Trapping on Private Land ...........................................20 Equipment and Fur Harvester Rules ............................................. 21 Use of Bait When Hunting and Trapping ........................................21 Hunting with Dogs ...........................................................................21 Equipment Regulations ...................................................................22
    [Show full text]
  • How to Avoid Incidental Take of American Marten
    How to Avoid Incidental Take Of American Marten While Trapping or Snaring Mink and other Furbearers. Jon Stone The purpose of this information is to reduce injury and mortality to the Endangered American Marten population caused by trapping mink and/or other furbearers. Marten are similar in appearance and habits to mink, and their ranges overlap with other furbearer species, and with each other. Therefore, it is important for trappers to know how to distinguish marten from mink, to recognize their preferred habitat types, and to avoid capturing or harvesting marten. Trappers must also learn what to do if a marten is caught incidentally. American marten Current Status Researchers speculate the current American marten (Martes americana) population on Cape Breton Island may be less than 50 animals. Consequently, in the summer of 2001, the marten population on Cape Breton Island was provincially listed as "endangered" under the Nova Scotia Endangered Species Act. Thought to be extirpated from the mainland, several marten re-introductions have been attempted. It seems these reintroductions have been successful, as there have been some very recent records of marten in southwest Nova Scotia. The status of the marten on the mainland is considered "data deficient," (meaning more research is required before giving it a designation). The harvesting of marten is not permitted in Nova Scotia. Time is of the Essence Small, localized populations, like the marten on Cape Breton Island, are vulnerable to local extinction. Factors such as inbreeding (a genetic effect), as well as habitat loss, accidental capture, starvation, and certain random events like disease, fire, and unusual weather events could eliminate the entire population.
    [Show full text]
  • The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States
    United States The Scientific Basis for Conserving Forest Carnivores Department of Agriculture Forest Service American Marten, Fisher, Lynx, Rocky Mountain and Wolverine Forest and Range Experiment Station in the Western United States Fort Collins, Colorado 80526 General Technical Report RM-254 Abstract Ruggiero, Leonard F.; Aubry, Keith B.; Buskirk, Steven W.; Lyon, L. Jack; Zielinski, William J., tech. eds. 1994. The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States. Gen. Tech. Rep. RM-254. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 184 p. This cooperative effort by USDA Forest Service Research and the National Forest System assesses the state of knowledge related to the conservation status of four forest carnivores in the western United States: American marten, fisher, lynx, and wolverine. The conservation assessment reviews the biology and ecology of these species. It also discusses management considerations stemming from what is known and identifies information needed. Overall, we found huge knowledge gaps that make it difficult to evaluate the species’ conservation status. In the western United States, the forest carnivores in this assessment are limited to boreal forest ecosystems. These forests are characterized by extensive landscapes with a component of structurally complex, mesic coniferous stands that are characteristic of late stages of forest development. The center of the distrbution of this forest type, and of forest carnivores, is the vast boreal forest of Canada and Alaska. In the western conterminous 48 states, the distribution of boreal forest is less continuous and more isolated so that forest carnivores and their habitats are more fragmented at the southern limits of their ranges.
    [Show full text]
  • Sierra Nevada Red Fox (Vulpes Vulpes Necator): a Conservation Assessment
    Sierra Nevada Red Fox (Vulpes vulpes necator): A Conservation Assessment John D. Perrine * Environmental Science, Policy and Management Department and Museum of Vertebrate Zoology University of California, Berkeley Lori A. Campbell** USDA Forest Service Pacific Southwest Research Station Sierra Nevada Research Center Davis, California Gregory A. Green Tetra Tech EC Bothell, Washington Current address and contact information: *Primary Author: J. Perrine, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401 [email protected] **L. Campbell, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616 Perrine, Campbell and Green R5-FR-010 August 2010 NOTES IN PROOF • Genetic analyses by B. Sacks and others 2010 (Conservation Genetics 11:1523-1539) indicate that the Sacramento Valley red fox population is native to California and is closely related to the Sierra Nevada red fox. They designated the Sacramento Valley red fox as a new subspecies, V. v. patwin. • In August 2010, as this document was going to press, biologists on the Humboldt-Toiyabe National Forest detected a red fox at an automatic camera station near the Sonora Pass along the border of Tuolomne and Mono Counties. Preliminary genetic analyses conducted at UC Davis indicate that the fox was a Sierra Nevada red fox. Further surveys and analyses are planned. • The California Department of Fish and Game Region 1 Timber Harvest Program has established a Sierra Nevada red fox information portal, where many management-relevant documents can be downloaded as PDFs. See: https://r1.dfg.ca.gov/Portal/SierraNevadaRedFox/tabid/618/Default.aspx Sierra Nevada Red Fox Conservation Assessment EXECUTIVE SUMMARY This conservation assessment provides a science-based, comprehensive assessment of the status of the Sierra Nevada red fox (Vulpes vulpes necator) and its habitat.
    [Show full text]
  • OREGON FURBEARER TRAPPING and HUNTING REGULATIONS
    OREGON FURBEARER TRAPPING and HUNTING REGULATIONS July 1, 2020 through June 30, 2022 Please Note: Major changes are underlined throughout this synopsis. License Requirements Trapper Education Requirement By action of the 1985 Oregon Legislature, all trappers born after June 30, Juveniles younger than 12 years of age are not required to purchase a 1968, and all first-time Oregon trappers of any age are required to license, except to hunt or trap bobcat and river otter. However, they must complete an approved trapper education course. register to receive a brand number through the Salem ODFW office. To trap bobcat or river otter, juveniles must complete the trapper education The study guide may be completed at home. Testing will take place at course. Juveniles 17 and younger must have completed hunter education Oregon Department of Fish and Wildlife (ODFW) offices throughout the to obtain a furtaker’s license. state. A furtaker’s license will be issued by the Salem ODFW Headquarters office after the test has been successfully completed and Landowners must obtain either a furtaker’s license, a hunting license for mailed to Salem headquarters, and the license application with payment furbearers, or a free license to take furbearers on land they own and on has been received. Course materials are available by writing or which they reside. To receive the free license and brand number, the telephoning Oregon Department of Fish and Wildlife, I&E Division, 4034 landowner must obtain from the Salem ODFW Headquarters office, a Fairview Industrial Drive SE, Salem, OR 97302, (800) 720-6339 x76002. receipt of registration for the location of such land prior to hunting or trapping furbearing mammals on that land.
    [Show full text]
  • Canada Lynx (Lynx Canadensis) in Eastern North American
    Species Status Assessment Class: Mammalia Family: Felidae Scientific Name: Lynx canadensis Common Name: Canadian lynx Species synopsis: The distribution of the Canadian lynx (Lynx canadensis) in North America is closely associated with the distribution of North American boreal forest. In Canada and Alaska, lynx inhabit the boreal forest ecosystem known as the taiga. The range of lynx populations extends south from the classic boreal forest zone into the subalpine forest of the western United States, and the boreal/hardwood forest ecotone in the eastern United States. Forests with boreal features extend southward into the contiguous United States along the North Cascade and Rocky Mountain ranges in the west, the western Great Lakes region, and northern Maine. Within these general forest types, lynx are most likely to persist in areas that receive deep snow and have high-density populations of snowshoe hares, the principal prey of lynx (USFWS 2013b). Regionally, the only recognized viable population exists in northern Maine. Until recently lynx were believed to be extirpated from New Hampshire and Vermont (Kart 2005) but recent confirmed sightings in VT and NH lend some doubt to that conclusion (NHFG 2015; Vermont Wildlife Action Plan, 2015). I. Status a. Current and Legal Protected Status i. Federal ___Threatened______________ Candidate? ____N/A__ ii. New York ___Threatened_____________________________________________ b. Natural Heritage Program Rank i. Global _____ G5______________________________________________________ ii. New York ______SX________ Tracked by NYNHP? _No (Watch list)_ Other Rank: IUCN Red List— Least concern 1 Species of Northeast Regional Conservation Concern (Therres 1999) Status Discussion: Canadian lynx numbers in the Unites States have been falling for the last 30 years.
    [Show full text]
  • Animal Tracks Poster 2017.Indd
    MAINE ANIMAL TRACKS (Direction of travel of all tracks is to the right) 1. CANADA LYNX 8. GRAY SQUIRREL 15. BEAVER 22. OTTER 2. BOBCAT 9. RED SQUIRREL 16. COTTONTAIL RABBIT 23. MUSKRAT 3. HOUSE CAT 10. CHIPMUNK 17. SNOWSHOE RABBIT 24. WHITETAIL DEER 4. RED FOX 11. WEASEL 18. RACCOON 25. MOOSE 5. DOG 12. FISHER 19. SKUNK 26. WILD TURKEY 2 1/2” 6. COYOTE 13. MARTEN 20. PORCUPINE 27. PHEASANT 7. BLACK BEAR 14. MINK 21. WOODCHUCK 28. RUFFED GROUSE Originally prepared by Klir Beck All in for the Maine Outdoors Revised by Cindy House; 1975 Revised April 2017 mefi shwildlife.com Play Animal Signs Bingo! The ability to interpret animal tracks and traces takes practice. Here are some tips to help Cut out each square below. Glue squares on a sheet of paper. Glue 4 squares across and 4 squares you hone your powers of observation and instincts as a nature detective. down - just like they are here, but in any order you like. Title your card “Animal Signs Bingo”. Using your bingo card, explore your school yard or backyard for animal signs. Tracks can tell a story about where the animal • Canines, felines, and members of the deer family If you get 4 across, 4 down, or all 4 corners - You’ve got Bingo! travelled from and where its now going. It gives us generally walk or trot. The trail looks like an almost clues about where the animal makes its home perfectly straight line of prints, because the animal places its hind foot into the print just made by the Anthill Half eaten fruit Nibbled branch Bumps on a leaf Hints to identifying a track: front foot.
    [Show full text]
  • American Marten, Fisher, Lynx, and Wolverine: Survey Methods for Their Detection Agriculture
    United States Department of American Marten, Fisher, Lynx, and Wolverine: Survey Methods for Their Detection Agriculture Forest Service Pacific Southwest Research Station Abstract Zielinski, William J.; Kucera, Thomas E., technical editors. 1995. American marten, fisher, lynx, and wolverine: survey methods for their detection. Gen. Tech. Rep. PSW-GTR-157. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 163 p. The status of the American marten (Martes americana), fisher (Martes pennanti), lynx (Lynx canadensis), and wolverine (Gulo gulo) is of increasing concern to managers and conservationists in much of the western United States. Because these species are protected throughout much of their range in the west, information on population status and trends is unavailable from trapping records. This report describes methods to detect the four species using either remote photography, track plates, or snow tracking. A strategy for systematic sampling and advice on the number of devices used, their deployment, and the minimum sampling duration for each sampling unit are provided. A method for the disposition of survey data is recommended such that the collective results of multiple surveys can describe regional distribution patterns over time. The report describes survey methods for detection only but also provides some considerations for their use to monitor population change. Retrieval Terms: furbearers, forest carnivores, survey methods, monitoring, inventory, western United States Technical Editors William J. Zielinski is research wildlife biologist with the Station's TimberlWildlife Research Unit, Redwood Sciences Laboratory, 1700 Bayview Drive, Arcata, CA 95521; and an Associate Faculty, Wildlife Department, Humboldt State University, Arcata, CA 95521. Thomas E.
    [Show full text]
  • An Evaluation of Black Bear Management Options
    _An_Evaluation_of Black_Bear _Management_Options Northeast Black Bear Technical Committee, August 2012 An_Evaluation_of_Black_ Bear_Management_Options _Table of Contents Acknowledgements______________________________________________________ 3 Northeast_Black_Bear_Technical_Committee_ _________________________________ 3 Introduction___________________________________________________________ 4 _ Brief History of Bear Management in the Northeast________________________________________ 5 The Changing Landscape of Bear Management & Human-Bear Conflicts_________________________ 7 Biological_Carrying_Capacity_vs_Cultural_Carrying_Capacity Black Bear Management Strategies_ . 8 Population_Management Human-Bear_Problem_Management Black_Bear_Population_Management_____________________________________ 9 Regulated Hunting & Trapping_______________________________________________________10 Control Non-Hunting Mortality_ . 12 Habitat Management_ . 14 Fertility Control_ . 16 Allow Nature to Take Its Course_ . 18 Human_Bear_Conflict_Management_ ____________________________________ 20 Public Education_ . 21 Exclusion Devices for Food & Waste Management_ . 23 Aversion Conditioning_ . 25 Repellents_ . 27 Kill Permits_ . 28 Capture & Kill_ . 30 Translocation_ . 31 Damage Compensation Programs or Reimbursement Fund_ . 33 Supplemental Feeding_ . 35 Conclusions____________________________________________________________ 37 Literature_Cited_________________________________________________________ 38 An Evaluation of Black Bear Management Options Acknowledgements
    [Show full text]