Types of Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Types of Mechanisms MAE 342 – Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 – Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms • Planar Mechanisms: all points on each part move only in . Image from Technische Universität Ilmenau. Image from Northern Tool + Equipment Catalog Co. Images from Tiptop Industry Co., Ltd. MAE 342 – Dynamics of Machines 3 Planar, Spherical and Spatial Mechanisms • Spherical Mechanisms: all points on each part move only in . Image from Maarten Steurbaut. Images from the Laboratory for the Analysis and Synthesis of Spatial Movement. Images from Laboratoire de robotique, Université Laval. MAE 342 – Dynamics of Machines 4 Planar, Spherical and Spatial Mechanisms • Spatial Mechanisms: points on each part can move in any direction in 3-dimensional space. Image from the Kinematic Models for Design Digital Library, Cornell University. Image from www.robots.com. Image from Slika Image from the Special Session on Computer Aided Linkage Synthesis, ASME DETC 2002. MAE 342 – Dynamics of Machines 5 Mobility • Degrees of freedom (DOF) is: the number of independent controls needed to position a body. Mathematically it is the number of independent variables needed to specify the position of a body. A planar body has ___ DOF. A spherical body has ___ DOF. A spatial body has ___ DOF. MAE 342 – Dynamics of Machines 6 Mobility • Mobility is: the number of degrees of freedom of a mechanism. If the number of planar bodies is n (and there are no joints) the mobility is ______ . If one of the bodies is fixed, the mobility is ________ . If the number of spatial bodies is n (and there are no joints) the mobility is ______ . If one of the bodies is fixed, the mobility is ________ . MAE 342 – Dynamics of Machines 7 Mobility • Each type of joint imposes a certain number constraints (i.e., takes away a certain number of DOF from mechanism) : Planar Mechanism Type of Joint variables DOF DOF removed Revolute Prismatic Cam Gear MAE 342 – Dynamics of Machines 8 Mobility Figure from Uicker et al., Theory of Machines and Mechanisms a) Revolute joint (R) – Circular motion b) Prismatic joint (P) – Rectilinear motion c) Screw joint (S) – Helical motion d) Cylindrical joint (C) – Cylindrical motion Figure from Unigraphics on-line documentation. e) Spherical joint (G) – Spherical motion f) Flat joint (F) – Planar motion MAE 342 – Dynamics of Machines 9 Mobility Spatial Mechanism Type of Joint variables DOF DOF removed Revolute Prismatic Screw Cylinderical Spherical Flat/Planar MAE 342 – Dynamics of Machines 10 Mobility • “Kutzbach Criteria” for mobility ( m) of: planar mechanisms: m = spatial mechanisms: m = where: MAE 342 – Dynamics of Machines 11 Mobility • In Kutzbach criteria a) If m > 0 b) If m = 0 c) if m < 0 MAE 342 – Dynamics of Machines 12 Mobility • What is the mobility in these examples? a) b) c) d) Figures from Uicker et al., Theory of Machines and Mechanisms , 2003 MAE 342 – Dynamics of Machines 13 Mobility • What is the mobility in these examples? a) b) c) d) Figures from Uicker et al., Theory of Machines and Mechanisms , 2003 MAE 342 – Dynamics of Machines 14 Mobility • Exceptions to the rule! Certain geometric conditions Different parts of a linkage can have different mobilities. MAE 342 – Dynamics of Machines 15 Torfason’s Classification of Mechanisms • Snap-Action Mechanisms • Linear Actuators • Fine Adjustments • Clamping Mechanisms • Locational Devices • Ratchets and Escapements • Indexing Mechanisms • Swinging or Rocking Mechanisms • Reciprocating Mechanisms • Reversing Mechanisms • Couplings and Connectors • Stop, Pause, and Hesitation Mechanisms • Curve Generators • Straight-Line Generators • … MAE 342 – Dynamics of Machines 16 Kinematic Inversion • You can pick different links to be the fixed link – this is “kinematic inversion” Figures from Uicker et al., Theory of Machines and Mechanisms , 2003 MAE 342 – Dynamics of Machines 17 Grashof’s Law • In a four bar linkage, if you want to be able to sit on one link and have some other link rotate 360° relative to you , then: where: s is the length of: l is the length of: p, q are the lengths of: MAE 342 – Dynamics of Machines 18 Grashof’s Law Figures from Uicker et al., Theory of Machines and Mechanisms , 2003.
Recommended publications
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • Kinematic Analysis of 3 D.O.F of Robot
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 Kinematic Analysis of 3 D.O.F of Robot Janakinandan Nookala, Prudhvi Gogineni, Suresh Babu G Abstract:The study of motion can be divided into kinematics The relative position of two bodies connected by aprismatic and dynamics. Direct kinematics refers to the calculation of end joint is defined by the amount of linear slide of one relative effectors position, orientation, velocity, and acceleration when to the other one. This one parameter movement identifies the corresponding joint values are known. Inverse refers to the this joint as a one degree of freedom kinematic pair. opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy collision CYLINDRICAL JOINT: avoidance, and singularity avoidance. Once all relevant positions, A cylindrical joint is two degrees of freedom kinematic pair velocities, and accelerations have been calculated using used in mechanisms. Cylindrical joints provide single-axis kinematics, this information can be used to improve the control sliding function as well as a single axis rotation, providing a algorithms of a robot. Most of the industrial robots are described way for two rigid bodies to translate and rotate freely. This geometrically by their Denavit-Hartenberg (DH) parameters, which are also difficult to perceive for students. Students will find can be pictured by an unsecured axle mounted on a chassis, the subject easier to learn if they are able to visualize in 3 as it may freely rotate and translate.
    [Show full text]
  • 1. Kinematics Apart Kinematics 1 Kenneth Waldron, James Schmiedeler
    9 1. Kinematics Part A Kinematics 1 Kenneth Waldron, James Schmiedeler 1.1 Overview .............................................. 9 Kinematics pertains to the motion of bod- ies in a robotic mechanism without regard 1.2 Position and Orientation Representation 10 to the forces/torques that cause the motion. 1.2.1 Position and Displacement ............ 10 Since robotic mechanisms are by their very 1.2.2 Orientation and Rotation .............. 10 essence designed for motion, kinematics is 1.2.3 Homogeneous Transformations ...... 13 14 the most fundamental aspect of robot de- 1.2.4 Screw Transformations .................. 1.2.5 Matrix Exponential sign, analysis, control, and simulation. The Parameterization ......................... 16 robotics community has focused on efficiently 1.2.6 Plücker Coordinates ...................... 18 applying different representations of position and orientation and their derivatives with re- 1.3 Joint Kinematics ................................... 18 spect to time to solve foundational kinematics 1.3.1 Lower Pair Joints .......................... 19 21 problems. 1.3.2 Higher Pair Joints ......................... 1.3.3 Compound Joints ......................... 22 This chapter will present the most useful 1.3.4 6-DOF Joint ................................. 22 representations of the position and orienta- 1.3.5 Physical Realization ...................... 22 tion of a body in space, the kinematics of 1.3.6 Holonomic the joints most commonly found in robotic and Nonholonomic Constraints ...... 23 mechanisms, and a convenient convention for 1.3.7 Generalized Coordinates ............... 23 representing the geometry of robotic mech- 1.4 Geometric Representation ..................... 23 anisms. These representational tools will be applied to compute the workspace , the for- 1.5 Workspace ........................................... 25 ward and inverse kinematics , the forward 1.6 Forward Kinematics .............................
    [Show full text]
  • The Multibody Dynamics Module User's Guide
    Multibody Dynamics Module User’s Guide Multibody Dynamics Module User’s Guide © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM023801 Contents Chapter 1: Introduction About the Multibody Dynamics Module 10 What Can the Multibody Dynamics Module Do? .
    [Show full text]
  • MECANO Motion Theory
    MECANO Motion/ Theory Page 1 MECANO Motion Theory SAMTECH SA 2000 April 2000 MECANO Motion/ Theory Page 2 Index 1 VARIATIONAL FORMULATION OF THE DYNAMIC PROBLEM ............................................. 3 1.1 CONSTRAINTS IN MECHANISM ANALYSIS........................................................................................... 4 2 CONSTRAINED STATIONARY VALUE PROBLEM....................................................................... 6 2.1 AUGMENTED LAGRANGIAN APPROACH ............................................................................................. 6 3 FORMULATION OF THE CONSTRAINED DYNAMIC PROBLEM............................................. 7 3.1 INTERNAL FORCES AND TANGENT STIFFNESS..................................................................................... 7 4 CLASSIFICATION OF KINEMATIC PAIRS ..................................................................................... 9 4.1 LOWER PAIRS..................................................................................................................................... 9 4.2 HIGHER PAIRS .................................................................................................................................. 13 5 MECANO ELEMENTS SYNTAX ....................................................................................................... 15 6 MECANO: NON LINEAR FINITE ELEMENT ANALYSIS ........................................................... 16 6.1 STRUCTURE LIBRARY......................................................................................................................
    [Show full text]
  • Handbook of Robotics Chapter 1: Kinematics
    Handbook of Robotics Chapter 1: Kinematics Ken Waldron Jim Schmiedeler Department of Mechanical Engineering Department of Mechanical Engineering Stanford University The Ohio State University Stanford, CA 94305, USA Columbus, OH 43210, USA September 17, 2007 Contents 1 Kinematics 1 1.1 Introduction . 1 1.2 Position and Orientation Representation . 1 1.2.1 Position and Displacement . 2 1.2.2 Orientation and Rotation . 2 Rotation Matrices . 2 Euler Angles . 3 Fixed Angles . 3 Angle-Axis . 4 Quaternions . 4 1.2.3 Homogeneous Transformations . 5 1.2.4 Screw Transformations . 5 Chasles’ Theorem . 6 Rodrigues’ Equation . 7 1.2.5 Matrix Exponential Parameterization . 8 Exponential Coordinates for Rotation . 8 Exponential Coordinates for Rigid Body Motion . 8 1.2.6 Pl¨ucker Coordinates . 9 1.3 Joint Kinematics . 9 1.3.1 Lower Pair Joints . 10 Revolute . 10 Prismatic . 10 Helical . 10 Cylindrical . 11 Spherical . 11 Planar . 12 1.3.2 Higher Pair Joints . 12 Rolling Contact . 12 1.3.3 Compound Joints . 12 Universal ............................................... 12 1.3.4 6-DOF Joint . 12 1.3.5 Physical Realization . 13 1.3.6 Holonomic and Nonholonomic Constraints . 13 1.3.7 Generalized Coordinates . 13 1.4 Geometric Representation . 13 1.5 Workspace . 15 1.6 Forward Kinematics . 16 1.7 Inverse Kinematics . 16 i CONTENTS ii 1.7.1 Closed-Form Solutions . 17 Algebraic Methods . 17 Geometric Methods . 17 1.7.2 Numerical Methods . 18 Symbolic Elimination Methods . 18 Continuation Methods . 18 Iterative Methods . 18 1.8 Forward Instantaneous Kinematics . 18 1.8.1 Jacobian . 19 1.9 Inverse Instantaneous Kinematics . 19 1.9.1 Inverse Jacobian .
    [Show full text]
  • An Introduction to Robotics: Mechanical Aspects
    AN INTRODUCTION TO ROBOTICS: MECHANICAL ASPECTS Pierre DUYSINX and Michel GERADIN University of Liege` Novembre 2004 2 Contents 1INTRODUCTION 1 1.1Originofthenamerobot............................... 2 1.2 Mechanical role of a robot manipulator . 2 1.3 Generalstructureofarobotmanipulator...................... 3 1.4Structureofthecontrolunit.............................. 4 1.5 Industrial robots at the present day . 4 1.6 The mechanical aspects of robotics . 5 1.7 Multidisciplinaryaspectsofrobotics......................... 6 2 BASICS OF ROBOTICS TECHNOLOGY 1 2.1TheMechanicalStructureofaRobot......................... 2 2.1.1 Degreesoffreedomofarigidbody...................... 2 2.1.2 Jointsandkinematicconstraints....................... 2 2.1.3 Generalizedcoordinates............................ 3 2.2KinematicPairs..................................... 3 2.2.1 Number of degrees of freedom of the joint . 3 2.2.2 Classificationofjoints............................. 3 2.2.3 Higherandlowerpairs............................. 5 2.2.4 Graphicrepresentationofjoints........................ 5 2.2.5 Joints used in robots . 5 2.3TopologyofKinematicChains............................ 8 2.3.1 Classification of robot topologies . 8 2.3.2 Description of simple open-tree structures . 11 2.4 Mobility Index and Number of dof for a Simple Open-Tree Manipulator . 11 2.4.1 Mobility index and GRUBLERformula...................¨ 11 2.4.2 Numberofdofofasimpleopen-treestructure................ 13 2.4.3 Number of DOF of a manipulator . 13 2.4.4 Jointspace..................................
    [Show full text]
  • Chaapter-8 INDUSTRIAL ROBOTICS
    7th Semester Mechanical Engineering CIM and Automation (06ME72) Chaapter-8 INDUSTRIAL ROBOTICS According to RIA (Robotics Industries Association) the definition of robot is “An industrial robot is a reprogrammable, multifunctional manipulator designed to move materials, parts, tools or special devices through variable programmed motions for the performance of a variety of tasks”. Over view of robots and future applications The four basic components of the robot system are o Manipulator o Sensors o Controller o Power conversion unit External power unit Teach Robot Computer Manipulator Pendent Controller Program Sensors storage disk / Internal / tape External Block diagram of an industrial robot HAREESHA N G Lecturer D B I T, Bangalore 1 7th Semester Mechanical Engineering CIM and Automation (06ME72) Manipulator: - The manipulator consists of a series of rigid members, called links, connected by joints. Motion of a particular joint causes subsequent links attached to it to move. The axes of motion of the robot arm can be either rotary or linear. The motion of the joint is accomplished by an actuator mechanism. The joints can be actuated by electric, hydraulic or pneumatic methods. The manipulator itself has three divisions a. The major linkages -- links like arm, shoulder and elbow, these link pairs grossly position the manipulator in space. The main frame is known as the “arm”. It consists of a sequence of mechanical links connected by joints. The function of the joint is to control the motion between the links b. The minor linkages – wrist components, these are associated with the fine positioning of the end effector i.e. they provide the ability to orient the end effector once the major linkages bring the manipulator close to the desired position.
    [Show full text]
  • "Introduction to Robotics: Mechanics, Planning, and Control," F. C. Park and K. M. Lynch
    INTRODUCTION TO ROBOTICS MECHANICS, PLANNING, AND CONTROL F. C. Park and K. M. Lynch Contents 1Preview 1 2 Configuration Space 9 2.1DegreesofFreedomofaRigidBody................ 10 2.2DegreesofFreedomofaRobot................... 13 2.2.1 RobotJoints......................... 13 2.2.2 Gr¨ubler’sFormula...................... 14 2.3 Configuration Space: Topology and Representation ........ 19 2.3.1 ConfigurationSpaceTopology................ 19 2.3.2 Configuration Space Representation ............ 21 2.4ConfigurationandVelocityConstraints............... 25 2.5TaskSpaceandWorkspace..................... 28 2.6Summary............................... 31 2.7Exercises............................... 33 3 Rigid-Body Motions 51 3.1Rigid-BodyMotionsinthePlane.................. 53 3.2RotationsandAngularVelocities.................. 59 3.2.1 RotationMatrices...................... 59 3.2.2 AngularVelocity....................... 65 3.2.3 Exponential Coordinate Representation of Rotation . 68 3.3Rigid-BodyMotionsandTwists................... 77 3.3.1 HomogeneousTransformationMatrices.......... 77 3.3.2 Twists............................. 83 3.3.3 Exponential Coordinate Representation of Rigid-Body Mo- tions.............................. 90 3.4Wrenches............................... 93 3.5Summary............................... 95 3.6Software................................ 97 3.7NotesandReferences......................... 98 3.8Exercises............................... 99 i CONTENTS 4 Forward Kinematics 117 4.1ProductofExponentialsFormula..................120 4.1.1
    [Show full text]