Research Note Extended Nest Residence and Cannibalism in a Jumping Spider (Araneae, Salticidae)

Total Page:16

File Type:pdf, Size:1020Kb

Research Note Extended Nest Residence and Cannibalism in a Jumping Spider (Araneae, Salticidae) 2000. The Journal of Arachnology 28:123±127 RESEARCH NOTE EXTENDED NEST RESIDENCE AND CANNIBALISM IN A JUMPING SPIDER (ARANEAE, SALTICIDAE) Keywords: Sociality, parental care, matriphagy, sub-social Menemerus bracteatus (L. Koch 1879) is a at least one clutch. A further seven nests large unidentate Australian salticid that nests found were from the previous season (evi- under the bark of eucalypt trees (Davies & dence: constructed on older bark attached to ZÇ abka 1989). During an earlier work (Rienks the shedding bark, and contained shed exo- 1992) several nests were found on the scribbly skeletons only). gum, Eucalyptus racemosa Cavanilles. While Description of nests.ÐNests were con- studying the microhabitats of a wide range of structed in the curve of the shedding bark and salticid species, it was noted that sometimes a had tough roof and outer walls which strongly single nest of this species was occupied by adhered to both the shedding bark and the tree numbers of large juveniles and the dead and trunk. Each nest had two reinforced entrances shrunken body of a conspeci®c adult female, with projecting lip-like ¯aps above and below possibly the mother. It is common for juvenile the entrance slit which may hinder access by salticids to remain with the mother for the ®rst predators and parasites. Nests were very instar after emerging from the postembryo strongly constructed and could be removed in- stage (Richman & Jackson 1992), but nest tact by carefully pulling the loose bark piece sharing by larger juveniles and an adult fe- away from the tree trunk. male is unusual. My observations suggested Most nests appeared to be in an early stage the juveniles of M. bracteatus may feed on of construction. Of the 11 nests which con- their mother, a behavior known as matriphagy. tained no clutches, seven appeared to have Matriphagy, although known in a variety of been just begun and consisted of the outer spider families, has not been documented for walls only (three of these contained adult fe- salticids. In the present paper, I provide data males), while the other four contained what on nest structure, nest residence and predators appeared to be preyed-upon clutches (stained other than conspeci®cs. Also, I examine the mass in which some individual chorions could hypothesis that juveniles of M. bracteatus be distinguished) and may have been aban- cannibalize their siblings and practice matri- doned. Counts were made of the number of phagy. Voucher specimens have been lodged clutches, and the number of eggs per clutch with the Queensland Museum (QM S.47193). in each nest for 23 nests. A total of 54 clutch- Four study sites in forests in which the es (median of two per nest) were found: 26% scribbly gum was common were selected in of the 23 nests contained one clutch, 30% con- the Brisbane metropolitan area. Three sites tained two, 30% contained three and 13% were in Toohey Forest, Grif®th University contained four or more. Nests containing four Campus; and one was in woodland adjacent or more clutches were completely ®lled with to Tingalpa Reserve. In each site, I sampled clutches and densely packed with loose sheets the occupants of as many nests as possible. of very sticky silk laid down between succes- No nests were found in the ®rst search which sive clutches. In contrast, nests with fewer was made when the scribbly gums had just clutches were only partially ®lled with a con- begun shedding bark (late October to early spicuous gap between the nest contents and November). A search between late December the nest roof. and early January revealed 35 nests in various The number of eggs per clutch was between stages of construction, 24 of which contained 9±45 (mean 23.8, SD 6.9, n 5 32) Eggs were 123 124 THE JOURNAL OF ARACHNOLOGY Table 1.ÐStages found in previous season's nests of Menemerus bracteatus. Numbers marked with an asterisk are nests in which adult remains were found. Nest 1, which may have been from the 1995±6 season, had been subjected to substantial insect attack; and its contents were almost entirely gone, leaving the outer nest wall only. Remains of individuals that had apparently been preyed upon are indicated by the number found, followed by ``p''. Instar determination is based on size of the carapace of the shed exuviae. First Second Third Fourth Fifth Sixth Nest Larva instar instar instar instar instar instar 10000010 2* 19 25 32 1 1p 11 1 1p 0 0 0 327263522001 427251 2p 18 7 0 0 0 5* 35 19 24 18 4 1 0 636362629200 7261 1p 27 1 1p 26 1 1p 13 10 0 2 pale orange in color, did not adhere to each smaller than adult-sized. The numbers of car- other, and were enclosed in a loose bag of apaces at each stage was more or less constant non-sticky silk. Regardless of whether they from the larval stage through to the third and were developing or apparently preyed-upon, sometimes the fourth instar (as shown by sec- clutches were included in calculations if the ond and third instar carapaces). Numbers then original numbers of eggs could be accurately declined rapidly, suggesting that dispersal had determined. Numbers of eggs per clutch occurred in the third and fourth instars. If (clutch size) did not vary signi®cantly with nests of this species usually contain about four apparent order of laying (outermost clutch clutches then it appears that the number of taken to be the most recent). Of the 23 nests juveniles that survived to disperse as fourth in which clutches were examined in detail, the (or occasionally third or ®fth) instars, was oldest stage of development included the egg equivalent to 1±1.5 full clutches. The presence (57% of nests), embryo (9%), prelarva (4%), of carapaces of large juveniles (®fth instar and larva (13%), ®rst instar (13%) and second in- older) suggested that juveniles may use the star (4%) (terminology after Foelix (1996) natal nest as a retreat for ®ve or more instars. which follows that of Vachon (1957)). Cannibalism in the nest.ÐSometimes en- In total, 43% of the nests had one or more tire clutches, still enclosed in the silk bag, clutches showing signs of development. Three contained empty chorions, and had apparently nests contained a clutch consisting of eggs, been eaten. Such clutches were found in the developing eggs, and prelarvae and/or larvae, nests from both seasons. Also, I found several suggesting that development of eggs within a apparently preyed-upon individuals (larvae clutch tends not to be synchronous. In two and later stages) in three nests from the pre- nests containing four or more clutches, clutch vious season (Table 1). Two of the current sea- development showed a cohort effect with sep- son's nests that contained four clutches and aration of cohorts by up to one instar (i.e., were more developed than the other nests modal numbers at every second stage). One were examined in more detail for signs of can- of these nests contained 2±3 clutches of eggs nibalism. All ®rst and later instars in both of (total of 71 eggs), 31 larvae and 34 ®rst in- these nests had grossly enlarged abdomens, stars. The second nest contained one clutch of consistent with having recently fed. All larvae eggs (25 eggs), 19 prelarvae, 7 larvae, 31 ®rst had small abdomens which were similar in instars and 5 second instars. size to those of the prelarvae, suggesting that Nest residence by juveniles.ÐThe seven they had not fed. nests collected that were from the previous It appears that more clutches are laid than (1996±7) season contained shed carapaces and survive to disperse (see above). Since the exoskeletons of, in total, seven distinct stages, number of larval carapaces in the previous including the larval stage and six instars (Ta- season's nests never exceeded 36 (the equiv- ble 1). The largest carapace was considerably alent of just over one clutch), it is likely that RIENKSÐEXTENDED NEST RESIDENCE IN A SALTICID 125 the older instars preyed upon prelarvae and & Wickler 1987; Evans et al. 1995), matri- larvae in addition to eggs. phagy may occur in this salticid species. Per- Two nests from the previous season con- haps the adaptive signi®cance of the long du- tained what were apparently adult remains, in ration of nest residence by juveniles may be one case the dorsal part of the carapace of an primarily facilitation of matriphagy. adult-sized individual, and in the other case, The laying of multiple clutches in the same trachea attached to fragments of abdominal nest probably does, however, have drawbacks. cuticle. It was not possible to determine For other salticids comparable to M. bractea- whether these remains were those of adult fe- tus in size (females ranged from 9.5± males. 11.5mm), the interval between oviposition of Predation.ÐOf the 23 nests collected in successive clutches tends to be 20±30 days. the 1997±8 season that were examined in de- Assuming that the inter-clutch interval is com- tail, 26% contained one or two larvae of Aus- parable for M. bracteatus it is probable that a tromantispa imbecilla (Gerstaecker) (Neurop- maternal female would need to make inter- tera: Mantispidae). The mantispid larvae from mittent feeding forays away from the nest dur- each of these nests, all of which initially con- ing the time span required for multiple ovi- tained either two or three clutches, were position. While at the nest, the female may be reared until pupation. In all cases, only a few able to guard her eggs against the attacks of eggs and larvae survived, the rest apparently predators and parasites, but leaving the nest to being consumed by the mantispid.
Recommended publications
  • Antimicrobial Compounds in the Volatilome of Social Spider Communities
    fmicb-12-700693 August 24, 2021 Time: 14:5 # 1 ORIGINAL RESEARCH published: 24 August 2021 doi: 10.3389/fmicb.2021.700693 Antimicrobial Compounds in the Volatilome of Social Spider Communities Alexander Lammers1,2*, Hans Zweers2, Tobias Sandfeld3, Trine Bilde4, Paolina Garbeva2, Andreas Schramm3 and Michael Lalk1* 1 Department of Cellular Biochemistry and Metabolomics, University of Greifswald, Greifswald, Germany, 2 Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands, 3 Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark, 4 Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark Social arthropods such as termites, ants, and bees are among others the most successful animal groups on earth. However, social arthropods face an elevated risk of Edited by: infections due to the dense colony structure, which facilitates pathogen transmission. An Eoin L. Brodie, Lawrence Berkeley National interesting hypothesis is that social arthropods are protected by chemical compounds Laboratory, United States produced by the arthropods themselves, microbial symbionts, or plants they associate Reviewed by: with. Stegodyphus dumicola is an African social spider species, inhabiting communal Hongjie Li, Ningbo University, China silk nests. Because of the complex three-dimensional structure of the spider nest Martin Kaltenpoth, antimicrobial volatile organic compounds (VOCs) are a promising protection against Max Planck Institute for Chemical pathogens, because of their ability to diffuse through air-filled pores. We analyzed Ecology, Germany Michael Poulsen, the volatilomes of S. dumicola, their nests, and capture webs in three locations in University of Copenhagen, Denmark Namibia and assessed their antimicrobial potential. Volatilomes were collected using Nanna Vidkjær, University of Copenhagen, Denmark, polydimethylsiloxane (PDMS) tubes and analyzed using GC/Q-TOF.
    [Show full text]
  • The Genetic Basis of Natural Variation in the Response to Adult
    THE GENETIC BASIS OF NATURAL VARIATION IN THE RESPONSE TO ADULT STARVATION IN CAENORHABDITIS ELEGANS by HEATHER M. ARCHER A DISSERTATION Presented to the Department of Biology and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2019 DISSERTATION APPROVAL PAGE Student: Heather M. Archer Title: The Genetic Basis of Natural Variation in the Response to Adult Starvation in Caenorhabditis elegans This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: John Conery Chairperson Patrick Phillips Advisor John Postlethwait Core Member William Cresko Core Member Michael Harms Institutional Representative and Janet Woodruff-Borden Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2019 ii © 2019 Heather M. Archer iii DISSERTATION ABSTRACT Heather M. Archer Doctor of Philosophy Department of Biology June 2019 Title: Assessment of Natural Variation in the Response to Adult Starvation in Caenorhabditis elegans Caenorhabditis elegans typically feeds on rotting fruit and plant material in a fluctuating natural habitat, a boom-and-bust lifestyle. Moreover, stage specific developmental responses to low food concentration suggest that starvation-like conditions are a regular occurrence. In order to assess variation in the C. elegans starvation response under precisely controlled conditions and simultaneously phenotype a large number of individuals with high precision, we have developed a microfluidic device that, when combined with image scanning technology, allows for high-throughput assessment at a temporal resolution not previously feasible and applied this to a large mapping panel of fully sequenced intercross lines.
    [Show full text]
  • Capture of a Functionally Active Methyl-Cpg Binding Domain by an Arthropod Retrotransposon Family
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Research Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family Alex de Mendoza,1,2 Jahnvi Pflueger,1,2 and Ryan Lister1,2 1Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia; 2Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon- encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima. Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding poten- tially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome dispro- portionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epige- nome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Benefits of Cooperation with Genetic Kin in a Subsocial Spider
    Benefits of cooperation with genetic kin in a subsocial spider J. M. Schneider*† and T. Bilde†‡§ *Biozentrum Grindel, University of Hamburg, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany; ‡Ecology and Genetics, Department of Biological Sciences, University of Aarhus, Ny Munkegade Building 1540, 8000 Aarhus C, Denmark; and §Animal Ecology, Department of Ecology and Evolution, Evolutionary Biology Centre, University of Uppsala, Norbyva¨gen 18d, 752 36 Uppsala, Sweden Edited by Bert Ho¨lldobler, Arizona State University, Tempe, AZ, and approved May 29, 2008 (received for review May 2, 2008) Interaction within groups exploiting a common resource may be tional systems may be especially illuminating (10), because once prone to cheating by selfish actions that result in disadvantages for established, cooperation may underlie novel selection regimes all members of the group, including the selfish individuals. Kin that override initial selection pressures (5, 11). Here we inves- selection is one mechanism by which such dilemmas can be re- tigate whether kin selection reduces the negative effects of solved This is because selfish acts toward relatives include the cost competition or selfish actions in a communally hunting spider of lowering indirect fitness benefits that could otherwise be described as a transitory species toward permanent sociality. achieved through the propagation of shared genes. Kin selection Communally feeding spiders are ideal to investigate costs and theory has been proved to be of general importance for the origin benefits of cooperation because of their feeding mode. Subsocial of cooperative behaviors, but other driving forces, such as direct and social spiders are known to hunt cooperatively; not only do fitness benefits, can also promote helping behavior in many they build and share a common capture web, but they also share cooperatively breeding taxa.
    [Show full text]
  • Benefits and Costs of Parental Care (Ed NJR)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Chapter 3: Benefits and costs of parental care (Ed NJR) Carlos Alonso‐Alvarez and Alberto Velando 3.1. Introduction In order to explain the huge variation in parental behaviour evolutionary biologists have traditionally used a cost‐benefit approach, which enables them to analyse behavioural traits in terms of the positive and negative effects on the transmission of parental genes to the next generation. Empirical evidence supports the presence of a number of different trade‐offs between the costs and benefits associated with parental care (Stearns 1992; Harshman and Zera 2007), although the mechanisms they are governed by are still the object of debate. In fact, Clutton‐Brock’s (1991) seminal book did not address the mechanistic bases of parental care and most work in this field has been conducted over the last 20 years. Research on mechanisms has revealed that to understand parental care behaviour we need to move away from traditional models based exclusively on currencies of energy/time. Nevertheless, despite repeated claims, the integration of proximate mechanisms into ultimate explanations is currently far from successful (e.g. Barnes and Partridge 2003; McNamara and Houston 2009). In this chapter, nonetheless, we aim to describe the most relevant advances in this field. In this chapter, we employ Clutton‐Brock’s (1991) definitions of the costs and benefits of parental care. Costs imply a reduction in the number of offspring other than those that are currently receiving care (i.e. parental investment, Trivers 1972), whereas benefits are increased fitness in the offspring currently being cared for.
    [Show full text]
  • Climatic Variables Are Strong Predictors of Allonursing and Communal Nesting in Primates
    City University of New York (CUNY) CUNY Academic Works School of Arts & Sciences Theses Hunter College 2-1-2019 Climatic variables are strong predictors of allonursing and communal nesting in primates Alexandra Louppova CUNY Hunter College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/hc_sas_etds/380 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Climatic variables are strong predictors of allonursing and communal nesting in primates by Alexandra Louppova Submitted in partial fulfillment of the requirements for the degree of Master of Arts Anthropology, Hunter College The City University of New York 2018 Thesis Sponsor: Andrea Baden December 15, 2018 Date Signature of First Reader Dr. Andrea Baden December 15, 2018 Date Signature of Second Reader Dr. Jason Kamilar Table of Contents ACKNOWLEDGEMENTS ....................................................................................................................... ii LIST OF FIGURES ................................................................................................................................... iii LIST OF TABLES ..................................................................................................................................... iv ABSTRACT ................................................................................................................................................
    [Show full text]
  • Effect of Kleptoparasitic Ants on the Foraging Behavior of a Social Spider (Stegodyphus Sarasinorum Karsch, 1891)
    Zoological Studies 58: 3 (2019) doi:10.6620/ZS.2019.58-03 Open Access Effect of Kleptoparasitic Ants on the Foraging Behavior of a Social Spider (Stegodyphus sarasinorum Karsch, 1891) Ovatt Mohanan Drisya-Mohan*, Pallath Kavyamol, and Ambalaparambil Vasu Sudhikumar Centre for Animal Taxonomy and Ecology, Department of Zoology, Christ College, Irinjalakuda, Kerala, India. *Correspondence E-mail: [email protected] (Drisya-Mohan). E-mail (other authors): [email protected] (Kavyamol); [email protected] (Sudhikumar) Received 23 February 2018 / Accepted 23 December 2018 / Published 25 February 2019 Communicated by John Wang The term kleptoparasitism is used to describe the stealing of nest material or prey of one animal by another. Foraging and food handling behaviors of social spiders increase the vulnerability to klepto- parasitism. Kleptoparasites of the social spider Stegodyphus sarasinorum Karsch 1891 were identified based on the observations done in the field. Four species of spiders and two species of ants were observed as kleptoparasites and collected from the nest and webs of this social spider. The ants were found to be the most dominant among them. The influence of a facultative kleptoparasitic ant, Oecophylla smaragdina on the foraging behavior of S. sarasinorum was studied in laboratory conditions. The experiments suggested that the web building behavior of S. sarasinorum was influenced by the exposure to ants. However, exposure to ants caused no significant effect in the prey capture, handling time of prey and prey ingestion behaviors of the spider. Key words: Social spider, Ecology, Kleptoparasites, Ants, Prey capturing behavior. BACKGROUND 2000). Kleptoparasites depend on high-quality food and it is available to them due to prolonged handling Kleptoparasitism is a type of feeding behavior, (Giraldeau and Caraco 2000).
    [Show full text]
  • Exploring Outcomes of Children and Young People in Kinship Care in South Wales
    _________________________________________________________________________Swansea University E-Theses Exploring outcomes of children and young people in kinship care in South Wales Pratchett, Rebecca How to cite: _________________________________________________________________________ Pratchett, Rebecca (2018) Exploring outcomes of children and young people in kinship care in South Wales. Doctoral thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa45015 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ Exploring outcomes of children and young people in kinship care in South Wales. Rebecca Pratchett Submitted to Swansea University in fulfilment of the requirements for the programme of Doctor of Philosophy. Swansea University 2017 i Abstract Around 30,000 young people enter care every year, with more than a fifth of those being placed with a relative or close family friend in kinship care. Literature has suggested that kinship care may be a positive avenue for providing alternative out-of-home care to young people in a cost-effective manner.
    [Show full text]
  • The Evolution of Sociality in Spiders
    ADVANCES IN THE STUDY OF BEHAVIOR, VOL. 37 The Evolution of Sociality in Spiders { Yael Lubin* and Trine Bilde *blaustein institutes for desert research, ben‐gurion university of the negev, sede boqer campus, 84990 israel {department of biological sciences, university of aarhus, denmark I. INTRODUCING SOCIAL SPIDERS A solitary lifestyle characterizes the vast majority of almost 40,000 known species of spiders (Platnick, 2007). Thus, the occurrence of group living in spiders begs the question: what is different about these species? Group living has arisen in spiders in basically two different forms. Cooperative or ‘‘non- territorial permanent‐social’’ species (sensu Avile´s, 1997;alsoreferredtoas ‘‘quasi‐social,’’ Buskirk, 1981) are the main focus of this chapter. These species have family‐group territories consisting of communal nests and cap- ture webs, which they inhabit throughout the entire lifetime of the individual, and colony members cooperate in foraging and raising young. In many ways, these species resemble the ‘‘primitively eusocial’’ wasps and bees and the cooperative breeders in vertebrate societies, where the family forms the basic unit of sociality (Brockmann, 1997; Whitehouse and Lubin, 2005). Another form of group living in spiders has been termed colonial or communal‐ territorial (Avile´s, 1997: ‘‘territorial permanent‐social’’ species). Colonial species occur in aggregations, but individuals in the colony generally forage and feed alone and there is no maternal care beyond the egg stage; thus, they lack the cooperative behaviors described below for nonterritorial permanent‐ social species (reviewed in Uetz and Hieber, 1997; Whitehouse and Lubin, 2005). Colonial species have been likened to foraging flocks of birds (Rypstra, 1979) and are described as ‘‘foraging societies’’ by Whitehouse and Lubin (2005).
    [Show full text]
  • Time Needed to Eat Mother Or Mate Methods
    Time Needed to Eat Mother or Mate Author: Joana Gonzalez Sociobiology ZOO 4512 Abstract: Results: Conclusion: This data observes the relative time it took for spiders Table 1: Data collected The spiders consumed their prey the slowest because and the praying mantis to eat their mate, and how long they are able to “store away” their food for later in their the spider offspring took to eat their mother. The data web after wrapping their mate in silk. The praying analyzed was from 3 videos of each act of cannibalism mantis requires more time than the spider offspring to that were timed and compared to one another. It was perform cannibalism because the praying mantis is found that the offspring of spiders eat their mother significantly larger. One female praying mantis eats fastest than the spiders and praying mantis eating their their mate that is significantly larger than spiders. The mate. spider offspring eat their mother the fastest because of the multitude of offspring that is feeding on the mother at the same time. Each offspring injects their venom in Introduction: the single mother, dissolving her inner organs, and the Cannibalism is the act of eating one’s same species Figure 1: Compares time it took for each organism to hundreds of spider offspring consume the mother at the for food (Cannibalism, 2020). Sexual cannibalism is perform cannibalism same time. The spider offspring feed on their mother for mostly the act of a female eating its male partner nutrients to help grow and to help teach them to either before, during, or after mating (Birkhead, et.
    [Show full text]
  • Short Communication Matriphagy in The
    2005. The Journal of Arachnology 33:873±877 SHORT COMMUNICATION MATRIPHAGY IN THE NEOTROPICAL PSEUDOSCORPION PARATEMNOIDES NIDIFICATOR (BALZAN 1888) (ATEMNIDAE) Everton Tizo-Pedroso and Kleber Del-Claro: LaboratoÂrio de Ecologia Comportamental e de InteracËoÄes, Instituto de Biologia, Universidade Federal de UberlaÃndia. C.P.593, Cep 38400-902, UberlaÃndia, MG, Brasil. Telfax: 55(34)32182243. E-mail: [email protected]. ABSTRACT. We studied the natural history and social behavior of Paratemnoides nidi®cator (Balzan 1888) in a tropical savanna system. Females were responsible for all nymphal care. We observed, for the ®rst time in pseudoscorpions, the occurrence of matriphagy behavior by the offspring. During conditions of food deprivation, the mother went out of the nest and passively awaited the protonymphs' attack, not reacting to the capture nor to the nymphs feeding on her body. We suggest that this extreme form of parental care, matriphagy, can reduce cannibalism among protonymphs and facilitate the evolution of social behavior in pseudoscorpions. RESUMO. NoÂs estudamos a histoÂria natural e o comportamento social de Paratemnoides nidi®cator (Balzan 1888) na regiaÄo dos cerrados. As feÃmeas foram responsaÂveis por todo o cuidado aÁs ninfas. NoÂs observamos, pela primeira vez em pseudoescorpioÄes, a ocorreÃncia de matrifagia pela prole. Em condicËoÄes de fome, a maÄe deixa o ninho e passivamente espera que as protoninfas a ataquem, naÄo reagindo nem aÁ captura, nem aÁ alimentacËaÄo das ninfas sobre seu corpo. NoÂs sugerimos que esta forma extrema de cuidado parental, matrifagia, possa reduzir o canibalismo entre as protoninfas e assim facilitar a evolucËaÄo de comportamento social em pseudoescorpioÄes. Keywords: Social behavior, maternal care, Arachnida, cannibalism, tropical savanna The order Pseudoscorpiones is highly diversi®ed may occur in the same rock ®ssure (Gabbutt 1962, with more than 3,239 described species in 425 gen- 1966).
    [Show full text]