A Floristic Study of Polylepis Forest Fragments in the Central Andes of Ecuador

Total Page:16

File Type:pdf, Size:1020Kb

A Floristic Study of Polylepis Forest Fragments in the Central Andes of Ecuador A FLORISTIC STUDY OF POLYLEPIS FOREST FRAGMENTS IN THE CENTRAL ANDES OF ECUADOR Ulrika Ridbäck Examensarbete i biologi, 15 hp, 2008 Handledare: Bertil Ståhl ___________________________________________________________________________ Institutionen för kultur, energi och miljö Högskolan på Gotland/Gotland University, SE-621 67 Visby www.hgo.se CONTENTS RESUMEN/ABSTRACT ……………………………………………………….....2 INTRODUCTION……………………………………………………...…....…......3 Background……………………………………………………...……………….....3 The genus Polylepis ……………………………………………………...………....3 Earlier studies……………………………………………………...………………..4 Why are Polylepis forests important? ………………………………………...…....5 Objectives……………………………………………………...……………...……5 STUDY AREA……………………………………………………...………...........6 Oyacachi……………………………………………………...…………………….6 Climate……………………………………………………...………………………7 MATERIAL AND METHODS………………………………………………...…..8 RESULTS…………………………………………………………………………...9 Observations of the remnants of Polylepis pauta forests…………………………...9 Species richness of vascular plants………………………………………………....9 Phytogeography…………………………………………………………………....10 Endemism………………………………………………………………………….10 Remnant of Polylepis microphylla forest at Achupallas…………………………..10 DISCUSSION……………………………………………………...………...........11 Species richness…………………………………………………………………...11 Conservation………………………………………………………………………11 Different Polylepis forests………………………………………………………...13 Reforestation……………………………………………………………………....13 Further studies…………………………………………………………………….14 ACKNOWLEDGEMENTS………………………………………………………14 REFERENCES.…………………………………………………………………...14 SAMMANFATTNING…..……………………………………………………….16 APPENDIXES……………………………………………………...………..........19 Appendix 1: Plant species of Polylepis forest and their distribution……………...19 Appendix 2: Páramo plant species and their distribution………………………....24 Cover picture: Calceolaria ericoides (Scrophulariaceae) Photo: Ulrika Ridbäck Denna uppsats är författarens egendom och får inte användas för publicering utan författarens eller dennes rättsinnehavares tillstånd. Ulrika Ridbäck 1 RESUMEN La presencia de los seres humanos ha afectado a los bosques de Polylepis desde hace mucho tiempo en los Andes de Ecuador. El objetivo de este estudio es la examinación de la flora de plantas vasculares en los bosques dominados por Polylepis pauta . Especies conocidas de plantas vasculares fueron registradas y especies menos conocidas fueron recolectadas. Todos los datos incluyendo coordenadas y altitud fueron analizados en el Herbario QCA. Se han registrado un total de 104 especies de plantas vasculares, el número de especies recogidas varía entre 16 y 36 en cada estudio local. Principalmente especies andinas dominan los bosques de P. pauta , 75 de las cuales están restringidas a los Andes. Se encontraron un total de 20 especies endemicas del Ecuador. Los bosques de Polylepis son un tipo único de hábitat por lo que vale conservar como un único tipo de hábitat. Polylepis puede contribuir con habitat y protección para los animales y las plantas, especialmente epífitas. Programas de reforestación con Polylepis podrían ser una buena alternativa para la zona de Oyacachi. ABSTRACT Human activity during several thousands of years has considerably changed the forests of Polylepis in the central Andes in Ecuador. The objective of this study was to examine the flora of vascular plants in forest fragments dominated by Polylepis pauta in the Oyacachi area in central Ecuador. Known species of vascular plants were recorded, and species not identified in the field were collected. All data, including coordinates and altitudes, were stored in the QCA Herbarium database. A total of 104 species of vascular plants were recorded. The number of species found varied from 16 to 36 between different localities. The P. pauta forests are dominated by Andean species, 75 of the recorded species being restricted to the Andes. Of these, 20 are endemic to Ecuador. The Polylepis forest as such is worth conserving as a unique kind of habitat, and can contribute with shelter and protection for many animals and plants, especially epiphytes. Reforestation programs based on Polylepis could be a good alternative in the Oyacachi area. 2 INTRODUCTION Background One of the richest floras in the world is found in South America. The Andes is a relatively young mountain chain that runs through the continent. The setting with a geologically recent uplift and a tropical and fluctuating climate has generated a plethora of species on and below the Andean slopes. Deforestation in the Andes has a long history, and different ethnic groups inhabited the Andean highlands many generations before the Spanish conquistadors arrived (Lippi 2004). Since humans entered this region the forests have been used as a source for building material and fuel (Fjeldså & Kessler 1996). Much of the forests were also cleared to produce farm land and pastures. The best known ethnic group before the Spanish colonisation, the Incas, used a terrace system which successfully kept the horizontal fields from erosion (Jørgensen & Ulloa 1994). To obtain more land for cultivation additional forests were cleared, which led to a reduction of natural vegetation. New agricultural techniques where introduced by the Spanish colonists and they abandoned the terraces used by the Incas. The deforestation continued and the Mediterranean type of agriculture practiced by the Europeans contributed to land degradation through soil erosion. The high Andean landscape seen today is dominated by grass páramos. Remnants of high Andean forests, which have been conserved to present time, consist largely of Polylepis spp., which often inhabit inaccessible steep slopes outside the inter-Andean plateau. The genus Polylepis Polylepis is a genus in the family Rosaceae and is restricted to the high Andes. Seven species of Polylepis are known from Ecuador (Romoleroux 1996), of which Polylepis incana, P. pauta and P. sericea are found in the Oyacachi valley (Ståhl et al. 1997). Polylepis is well adapted to the harsh climate in the mountains, having reduced flowers and leaves covered with woolly hairs (Fjeldså & Kessler 1996). The trunks wear thick and rough bark, a protection against nocturnal frost. At altitudes between 3500 and 4000 m, Polylepis is the only resource of wood in a zone where other tree species are unable to grow (Fjeldså & Kessler 1996). Some species of Polylepis even occur at an altitude of 4850 m (Braun 1997). The Polylepis forests are most common in mountain slopes, deep canyons and ravines, often among rocks and boulders. The growth of Polylepis has been hypothesised to be limited to favourable microclimatic conditions, which occur on rocky isolated slopes (Velez et al. 1998). However, today most scientists believe that the high Andean vegetation largely is anthropogenic. The practice to burn large areas to create and improve pastures has reduced Polylepis forests to a few percentage of their original extent (Kessler 2002). Remaining patches of Polylepis forests are spread out in an open landscape, separated by huge areas of grass páramo. The borders between the forests and the páramos are usually sharp. 3 Fig. 1. Map of Ecuador, showing the location of the Cayambe-Coca Ecological Reserve, nr 14 ( Mapa físico, República del Ecuador 1999 ). Earlier studies Little is known about the floristic diversity within Polylepis forests (Fernández & Ståhl 2002). In Ecuador, earlier studies of Polylepis forests have been done in the vicinity of Oyacachi in the Cayambe-Coca Ecological Reserve (Fig. 1), an area protected since 1970 (Morales & Schjellerup 1997). The DIVA-project (1996-1997) studied the interactions between the people in the village Oyacachi and the environment, to estimate the biological consequences caused by present and potential future land use (Skov 1997). Focusing on a few target taxa (ferns, Rubiaceae, Piperaceae) the Polylepis forests were also studied within the DIVA-project, but only at a few sites near the village. Studies of Polylepis near Oyacachi have also been carried out by Cierjacks et al. (2007) in Polylepis stands at Páramo de Papallacta. They studied the 4 capacity of lateral expansion and focused on the possibility of recovering to dense Polylepis forest stands. Cierjacks et al. (2007) made transects to examine the cover of herbaceous vegetation in Polylepis incana and P. pauta forests. In a follow-up study, Cierjacks et al. (2008) investigated reproductive traits, site conditions and stand structure of P. incana and P. pauta in Páramo de Papallacta, with the effects of altitude and cattle as limiting factors. Fehse et al. (2002) examined the possibility of carbon offsets at a P. incana forest, by quantifying aboveground biomass. The study took place near Pifo, 20 km southwest of Oyacachi. Several floristic and biogeographic works on Polylepis forests have been done in Bolivia. One study, which gave inspiration to this present work, was carried out in the Andes of south- central Bolivia by Fernández & Ståhl (2002). They investigated the conditions for vascular plants in Polylepis forests at different localities in the Cordillera de Cochabamba. Why are Polylepis forests important? The forests of Polylepis have a unique biological diversity and provide many important ecological functions (Fjeldså & Kessler 1996). The trees harbour many species of epiphytic vascular plants, mosses and lichens, as well as animals, including mammals and birds. In a landscape dominated by open páramos, the forests give shelter, nesting sites, and food to many mammals and birds. Being native to the Andes,
Recommended publications
  • Plant Diversity and Composition Changes Along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon
    diversity Article Plant Diversity and Composition Changes along an Altitudinal Gradient in the Isolated Volcano Sumaco in the Ecuadorian Amazon Pablo Lozano 1,*, Omar Cabrera 2 , Gwendolyn Peyre 3 , Antoine Cleef 4 and Theofilos Toulkeridis 5 1 1 Herbario ECUAMZ, Universidad Estatal Amazónica, Km 2 2 vía Puyo Tena, Paso Lateral, 160-150 Puyo, Ecuador 2 Dpto. de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110-104 Loja, Ecuador; [email protected] 3 Dpto. de Ingeniería Civil y Ambiental, Universidad de los Andes, Cra. 1E No. 19a-40, 111711 Bogotá, Colombia; [email protected] 4 IBED, Paleoecology & Landscape ecology, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands; [email protected] 5 Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, P.O.Box, 171-5-231B Sangolquí, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-961-162-250 Received: 29 April 2020; Accepted: 29 May 2020; Published: 8 June 2020 Abstract: The paramo is a unique and severely threatened ecosystem scattered in the high northern Andes of South America. However, several further, extra-Andean paramos exist, of which a particular case is situated on the active volcano Sumaco, in the northwestern Amazon Basin of Ecuador. We have set an elevational gradient of 600 m (3200–3800 m a.s.l.) and sampled a total of 21 vegetation plots, using the phytosociological method. All vascular plants encountered were typified by their taxonomy, life form and phytogeographic origin. In order to determine if plots may be ensembled into vegetation units and understand what the main environmental factors shaping this pattern are, a non-metric multidimensional scaling (NMDS) analysis was performed.
    [Show full text]
  • Resource Partitioning Among Five Sympatric Mammalian Herbivores on Yanakie Isthmus, South- Eastern Australia
    Resource partitioning among five sympatric mammalian herbivores on Yanakie Isthmus, south- eastern Australia Naomi Ezra Davis Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2010 Department of Zoology The University of Melbourne i Abstract This thesis combines multiple approaches to improve our understanding of large herbivore ecology and organisation in a contemporary assemblage made up of species with independent evolutionary histories on Yanakie Isthmus, Wilsons Promontory National Park, Victoria, Australia. In particular, this thesis compares niche parameters among populations of five sympatric native and introduced herbivore species by simultaneously assessing overlap in resource use along two dimensions (spatial and trophic) at multiple scales, thereby providing insight into resource partitioning and competition within this herbivore assemblage. Faecal pellet counts demonstrated that inter-specific overlap in herbivore habitat use on Yanakie Isthmus was low, suggesting that spatial partitioning of habitat resources had occured. However, resource partitioning appeared to be independent of coevolutionary history. Low overlap in habitat use implies low competition, and the lack of clear shifts in habitat use from preferred to suboptimal habitats suggested that inter-specific competition was not strong enough to cause competitive exclusion. However, low overlap in habitat use between the European rabbit Oryctolagus cuniculus and other species, and preferential use by rabbits (and avoidance by other species) of the habitat that appeared to have the highest carrying capacity, suggested that rabbits excluded other grazing herbivores from preferred habitat. High overlap in habitat use was apparent between some species, particularly grazers, indicating some potential for competition if resources are limiting.
    [Show full text]
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: a Review
    Review Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review Luis A. Puente a,⁎, Claudia A. Pinto-Muñoz a, Eduardo S. Castro a, Misael Cortés b a Universidad de Chile, Departamento de Ciencia de los Alimentos y Tecnología Química. Av. Vicuña Mackenna 20, Casilla, Santiago, Chile b Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimento, A.A. 568 Medellin Colombia abstract The main objective of this work is to spread the physicochemical and nutritional characteristics of the Physalis peruviana L. fruit and the relation of their physiologically active components with beneficial effects on human health, through scientifically proven information. It also describes their optical and mechanical properties and presents micrographs of the complex microstructure of P. peruviana L. fruit and studies on the antioxidant Keywords: capacity of polyphenols present in this fruit. Physalis peruviana Bioactive compounds Functional food Physalins Withanolides Contents 1. Introduction .............................................................. 1733 2. Uses and medicinal properties of the fruit ................................................ 1734 3. Microstructural analysis ........................................................ 1734 4. Mechanical properties of the fruit .................................................... 1735 5. Optical properties of the fruit ...................................................... 1735 6. Antioxidant properties of fruit
    [Show full text]
  • The Cape Gooseberry and the Mexican Husk Tomato
    MORTON AND RUSSELL: CAPE GOOSEBERRY 261 LITERATURE CITED Seedling Plantings in Hawaii. Hawaii Agric. Expt. Sta. Bui. 79: 1-26. 1938. 1. Pope, W. T. The Macadamia Nut in Hawaii. 10. Howes, F. N. Nuts, Their Production and Hawaii Agric. Exp. Sta. Bui. 59: 1-23. 1929. Everyday Use. 264 pp. London, Faber & Faber. 2. Hamilton, R. A. and Storey, W. B. Macadamia 1953. Nut Varieties for Hawaii Orchards. Hawaii Farm Sci., 11. Cooil, Bruce J. Hawaii Agric. Exp. Sta. Bien 2: (4). 1954. nial Report—1950-52: p. 56. ft. Chell, Edwin and Morrison, F. R. The Cultiva 12. Beaumont, J. H. and Moltzau, R. H. Nursery tion and Exploitation of the Australian Nut. Sydney, Propagation and Topworking of the Macadamia. Ha Tech. Museum Bui. 20: 1935. waii Agric?. Exp. Sta. Cir. 13: 1-28. 1937. 4. Francis, W. D. Australian Rain Forest Trees. 13. Fukunaga. Edward T. Grafting and Topwork 469 pp. Sydney and London, Angus and Robertson: ing the Macadamia. Univ. of Hawaii Agric. Ext. Cir. 1951 58: 1-8. 1951. 5. Bailey, L. H. Manual of Cultivated Plants. N. Y.f 14. Storey, W. B., Hamilton, R. A. and Fukunaga, McMillan. 1949. E. T. The Relationship of Nodal Structures to Train 6. Chandler, Wm. H. Evergreen Orchards. 352 pp.: ing Macadamia Trees. Am. Soc. Hort. Sci. Proc. 61: Philadelphia, Lea & Febiger. 1950. pp. 317-323. 1953. 7. Schroeder, C. A. The Macadamia Nut. Calif. 15. Anonymous. Insect Pests and Diseases of Agric, p. 3: April 1954. Plants. Queensland Agriculture and Pastoral Hand 8. Miller, Carey D.
    [Show full text]
  • Carrying Capacity of Vicunas in the Chimborazo Faunal Production Reserve, Ecuador
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 Carrying capacity of vicunas in the Chimborazo Faunal Production Reserve, Ecuador Scott, David http://knowledgecommons.lakeheadu.ca/handle/2453/4610 Downloaded from Lakehead University, KnowledgeCommons CARRYING CAPACITY OF VICUNA IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO April 2020 ii CARRYING CAPACITY OF VICUNAS IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University April 2020 --------------------------------------- ---------------------------------- Dr. Brian McLaren Patricio Lozano Major Advisor Second Reader iii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Date: _____________________________April 22nd 2020 iv A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific environmental management. The reader should be aware that the opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University.
    [Show full text]
  • Lições Das Interações Planta – Beija-Flor
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA JÉFERSON BUGONI REDES PLANTA-POLINIZADOR NOS TRÓPICOS: LIÇÕES DAS INTERAÇÕES PLANTA – BEIJA-FLOR PLANT-POLLINATOR NETWORKS IN THE TROPICS: LESSONS FROM HUMMINGBIRD-PLANT INTERACTIONS CAMPINAS 2017 JÉFERSON BUGONI REDES PLANTA-POLINIZADOR NOS TRÓPICOS: LIÇÕES DAS INTERAÇÕES PLANTA – BEIJA-FLOR PLANT-POLLINATOR NETWORKS IN THE TROPICS: LESSONS FROM HUMMINGBIRD-PLANT INTERACTIONS Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutor em Ecologia. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Ecology. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO JÉFERSON BUGONI E ORIENTADA PELA DRA. MARLIES SAZIMA. Orientadora: MARLIES SAZIMA Co-Orientador: BO DALSGAARD CAMPINAS 2017 Campinas, 17 de fevereiro de 2017. COMISSÃO EXAMINADORA Profa. Dra. Marlies Sazima Prof. Dr. Felipe Wanderley Amorim Prof. Dr. Thomas Michael Lewinsohn Profa. Dra. Marina Wolowski Torres Prof. Dr. Vinícius Lourenço Garcia de Brito Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. DEDICATÓRIA À minha família por me ensinar o amor à natureza e a natureza do amor. Ao povo brasileiro por financiar meus estudos desde sempre, fomentando assim meus sonhos. EPÍGRAFE “Understanding patterns in terms of the processes that produce them is the essence of science […]” Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology 73:1943–1967. AGRADECIMENTOS Manifestar a gratidão às tantas pessoas que fizeram parte direta ou indiretamente do processo que culmina nesta tese não é tarefa trivial.
    [Show full text]
  • Project Report
    THE APPLICATION OF PHYTOLITH AND STARCH GRAIN ANALYSIS TO UNDERSTANDING FORMATIVE PERIOD SUBSISTENCE, RITUAL, AND TRADE ON THE TARACO PENINSULA, HIGHLAND BOLIVIA ___________________________________________________________________ A Thesis Presented to the Faculty of the Graduate School University of Missouri, Columbia ___________________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Arts ___________________________________________________________________ By AMANDA LEE LOGAN Supervisor: Dr. Deborah M. Pearsall AUGUST 2006 Dedicated to the memory of my grandmother Joanne Marie Higgins 1940-2005 ACKNOWLEDGEMENTS There are a great number of people who have helped in this process in passing or in long, detailed conversations, and everything in between. First and foremost, many thanks to my advisor, Debby Pearsall, for creative and inspired guidance, and for taking the time to talk over everything from the smallest detail to the biggest challenges. Debby introduced me to the world of phytoliths, and then to the wonders of starch grains, and encouraged me to find and pursue the issues that drive me. My committee has been very helpful and patient, and made my oral exams and defense far more enjoyable then expected—Dr. Christine Hastorf, Dr. Bob Benfer, and Dr. Randy Miles. Dr. Benfer was crucial in helping me sort through the statistical applications. I also benefited tremendously from conversations with and advice from my cohorts in the MU Paleoethnobotany lab, or as we are better known, the “Pearsall Youth”— Neil Duncan, Shawn Collins, Meghann O’Brien, Tom Hart, and Nicole Little. Dr. Karol Chandler-Ezell gave me great advice on calcium oxalate and chemical processing. Dr. Todd VanPool graciously provided much needed advice on the statistical applications.
    [Show full text]
  • Polylepis En El Peru
    INFORMACION PRELIMINAR DE LA ECOLOGIA, DENDROLOGIA Y DISTRIBUCION GEOGRAFICA DE LAS ESPECIES DEL GENERO POLYLEPIS EN EL PERU Rafael Lao Magin1 Percy Zevallos Pollito2 Horacio de la Cruz Silva3 l. Ingeniero Forestal, Facultad de Ciencias Forestales, UNA. 2. Ingeniero Forestal, Facultad de Ciencias Forestales, UNA. 3. Biólogo, Pontificia Universidad Católica del Perú PRESENT ACION Al presentar esta nota técnica deseo hacer un homenaje a la memoria de quien en vida fue Ing. Rafael Lao Magin, co-autor, quien siempre estuvo preo­ cupado en ubicar rodales semilleros de las especies de Polylepis con la finalidad de usarlos en la reforestación de nuestra sierra peruana. Estamos seguros que él hubiera querido que esta nota sea la más completa, sin embargo hemos procurado terminar sólo hasta donde se avanzó bajo su dirección. INTRODUCCION El presente documento viene a ser más que todo una breve revisión de las especies del género Polylepis, realizado a través de recopilación de información bibliográfica, trabajo de observación de especímenes de herbario (Universidad Nacional Agraria La Molina y Universidad Nacional Mayor de San Marcos), con la finalidad de usarlos en la reforestación de la Sierra del Pero. Las especies de dicho género tienen una gran importancia para la población andina por la utilidad que tienen en sus vidas cotidianas; leña, construcción, he­ rramientas, agricultura, etc.; lamentablemente, la mayoría de los bosques donde se la ubicaba fueron talados para utilizarlos como leña principalmente; además de ser una de las especies forestales adaptadas a las condiciones climáticas adversas que se le presentan encima de los 2,800 msnm. Finalmente, estamos presentando la descripción de 10 especies considera­ das en el estudio de Simpson (1979), tres figuras de las especies más importantes: Polylepis incana, P.
    [Show full text]
  • GIANT RHUBARB Gunnera Tinctoria
    GIANT RHUBARB Gunnera tinctoria Invasive Plant Information Note What is it? Giant rhubarb (Gunnera tinctoria) is a large perennial plant which is native to Chile and Argentina in South America. It was first introduced to Ireland in the 1800s as an ornamental garden plant because of its size and exotic appearance. Since then, it has escaped into the wild and is now particularly invasive along the western coast. Giant rhubarb has naturalised along the milder and wetter western seaboard because the climatic conditions are similar to that of its former range. Giant rhubarb grows well in constantly damp soil and is frequently found on disused agricultural land, damp fields, roadsides and hillsides. Please see link to its distribution across Ireland: http://maps.biodiversityireland.ie/#/Home. Fig. 1: Giant rhubarb (www.nonnativespecies.org) Fig. 2: Invading agricultural land in Co. Mayo (www.dnfc.net) Why should we be worried about it? Giant rhubarb threatens indigenous biodiversity. Once established, it can quickly develop large and dense colonies which prevent native plants from growing underneath them (See Fig. 1 & Fig. 7). The plant is shade tolerant so it may colonise in a variety of landscapes. The dense stands of Giant rhubarb can render large areas of land unsuitable for agricultural or amenity purposes (See Fig. 2). The species can invade native grassland and subsequently reduce the value of the land for grazing. The huge leaves are unpalatable to livestock because of the small spikes on the back of the leaves and along the stems. When Giant rhubarb dies-back during the winter the soil is left bare and more susceptible to erosion.
    [Show full text]
  • Ethnobotanical Study of Medicinal Plants Used by the Andean People of Canta, Lima, Peru
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266388116 Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru Article in Journal of Ethnopharmacology · June 2007 DOI: 10.1016/j.jep.2006.11.018 CITATIONS READS 38 30 3 authors, including: Percy Amilcar Pollito University of São Paulo 56 PUBLICATIONS 136 CITATIONS SEE PROFILE All content following this page was uploaded by Percy Amilcar Pollito on 14 November 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Journal of Ethnopharmacology 111 (2007) 284–294 Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru Horacio De-la-Cruz a,∗, Graciela Vilcapoma b, Percy A. Zevallos c a Facultad de Ciencias Biol´ogicas, Universidad Pedro Ruiz Gallo, Lambayeque, Peru b Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru c Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Lima, Peru Received 14 June 2006; received in revised form 15 November 2006; accepted 19 November 2006 Available online 2 December 2006 Abstract A survey aiming to document medicinal plant uses was performed in Canta Province Lima Department, in the Peruvians Andes of Peru. Hundred and fifty people were interviewed. Enquiries and informal personal conversations were used to obtain information. Informants were men and women over 30 years old, who work in subsistence agriculture and cattle farming, as well as herbalist.
    [Show full text]
  • The Flickering Connectivity System of the North Andean Páramos
    bioRxiv preprint doi: https://doi.org/10.1101/569681; this version posted March 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 TITLS: The flickering connectivity system of the north Andean páramos 2 SHORT RUNNING TITLE: Andean flickering connectivity since 1 Ma 3 4 AUTHORS 5 Suzette G.A. FLANTUA1,2*, Aaron O’DEA3, Renske E. ONSTEIN4, Henry HOOGHIEMSTRA1 6 1 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The 7 Netherlands. 8 2 Department of Biological Sciences, University of Bergen, Bergen, Norway 9 10 3 Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama 11 4 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzich, Deutscher Platz 5e, 12 04103 Leipzig, Germany. 13 14 * Corresponding author: [email protected]. ORCID: https://orcid.org/0000-0001-6526-3037 15 16 ACKNOWLEDGEMENTS 17 This work was part of SGAF’s doctoral thesis funded by Netherlands Organization for Scientific Research 18 (NWO, grant 2012/13248/ALW to HH.). The Hugo de Vries foundation is acknowledged for financially 19 supporting multiple grant proposals during the project including the development of the visualization 20 accompanying this paper. The Sistema Nacional de Investigadores (SNI) de SENACYT supported AO. 21 REO acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐ 22 Jena‐Leipzig funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)— 23 FZT 118.
    [Show full text]