Cryptoendolithic Black Fungi from Antarctic Desert

Total Page:16

File Type:pdf, Size:1020Kb

Cryptoendolithic Black Fungi from Antarctic Desert STUDIES IN MYCOLOGY 51: 1–32. 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert L. Selbmann1, G.S. de Hoog2,3, A. Mazzaglia4, E.I. Friedmann5 and S. Onofri1* 1Dipartimento di Scienze Ambientali, Università degli Studi della Tuscia, Largo dell’Università, Viterbo, Italy 2Centraalbureau voor Schimmelcultures, P.O. Box 85167, NL-3508 AD, Utrecht, The Netherlands 3Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 315, NL-1098 SM Amsterdam, The Netherlands 4Dipartimento di Difesa delle Piante, Università degli Studi della Tuscia, Via S. Camillo de Lellis, Viterbo, Italy 5NASA Ames Research Center, Moffett Field, CA 94035-1000, U.S.A. *Correspondence: S. Onofri, [email protected] Abstract: Twenty-six strains of black, mostly meristematic fungi isolated from cryptoendolithic lichen dominated communi- ties in the Antarctic were described by light and Scanning Electron Microscopy and sequencing of the ITS rDNA region. In addition, cultural and temperature preferences were investigated. The phylogenetic positions of species recognised were determined by SSU rDNA sequencing. Most species showed affinity to the Dothideomycetidae and constitute two main groups referred to under the generic names Friedmanniomyces and Cryomyces (gen. nov.), each characterised by a clearly distinct morphology. Two species could be distinguished in each of these genera. Six strains could not be assigned to any taxonomic group; among them strain CCFEE 457 belongs to the Hysteriales, clustering together with Mediterranean marble- inhabiting Coniosporium species in an approximate group with low bootstrap support. All strains proved to be psychrophiles with the only exception for the strain CCFEE 507 that seems to be mesophilic- psychrotolerant. All had very thick melanised cell walls, the ability to produce exopolysaccharides and to grow meristematically. They are thought to be well adapted to the harsh environment of the Antarctic cold Desert. Hypotheses concerning their origin and evolution are put forward. Taxonomic novelties: Cryomyces antarcticus Selbmann, de Hoog, Mazzaglia, Friedmann & Onofri gen. sp. nov., C. minteri Selbmann, de Hoog, Mazzaglia, Friedmann & Onofri sp. nov., Friedmanniomyces simplex Selbmann, de Hoog, Mazzaglia, Friedmann & Onofri sp. nov. Key words: Antarctica, black yeasts, cryptoendolithic community, Dothideales, extremophiles, Hysteriales, ITS, licheni- colous fungi, meristematic fungi, microcolonial fungi, phylogeny, SSU, taxonomy. INTRODUCTION rather than colonising its surface lies in the signifi- cant microclimatic changes occurring over a distance Antarctic rock-inhabiting microorganisms live at the of a few millimetres within the rock substratum absolute edge of life under the most extreme condi- (Friedmann & Weed 1987). Average Winter tem- tions known on Earth. They live between the limit of peratures at rock surfaces generally lie 2 °C below adaptability and near-death, barely surviving and the outside air temperature, ranging in 1985 from – rarely reproducing (Friedmann & Weed 1987). The 47.2 °C to –19.4 °C on Linnaeus Terrace (McMurdo environmental conditions of the cold deserts in the Dry Valleys; Friedmann et al. 1987), but in Summer McMurdo Dry Valleys (Fig. 1B–D) are extremely the rock surface temperature may reach 20 °C above stressful to microbial growth. These conditions have that of outside air. Large differences in microclimatic been postulated to resemble those prevailing at early conditions are noted with exposition. Wide thermal Mars, combining extremely low temperatures with fluctuations at exposed sites contribute to the practi- extreme dryness and high solar irradiation (Onofri et cally sterile conditions at the outside, the communi- al. 2004). ties being inside the rock where the nanoclimate Rocks have a prominent role as substrata in such supplies milder and more stable conditions (Nienow cold deserts (Nienow & Friedmann 1993). When & Friedmann 1993). conditions at the rock surface are prohibitive for Antarctic cryptoendolithic microorganisms consti- microbial life, Antarctic microbial communities form tute very simple communities comprising only a few a particular cryptoendolithic ecotype (Golubic et al. species (Nienow & Friedmann 1993). The most 1981), i.e. condensed growth in microscopic niches common and extensively studied is the “lichen- under the surface of porous rock (Nienow & Fried- dominated community” in sandstone (Friedmann mann 1993). The reasons for growth inside rock 1982). This community colonises porous rocks up to 1 SELBMANN ET AL. about 10 mm deep under the rock crust. Microbial Such fungi are also found in other environments growth leads to variously coloured bands (Fig. 1F). where they are subjected to extreme conditions. This stratification is maintained because each micro- Black meristematic microfungi, producing slowly bial type has different physiological requirements and expanding cauliflower-like colonies, are morphologi- abilities (e.g., exposure to solar radiation) and/or cally barely differentiated. Their phylogeny is quite produces different antibiotic substances (Ocampo- diverse, and they have been assigned to three differ- Friedmann & Friedmann 1993). The community is ent ascomycete orders: Dothideales, Chaetothyriales organised as follows. Immediately under the silici- and Pleosporales (Sterflinger et al. 1999). They are fied, reddish brown crust (1) a black speckled zone commonly isolated from rocks in hot climates (Wol- (2) is observed, followed by a white band (3), a green lenzien et al. 1997), marble monuments (Sterflinger band (4) and sometimes a blue-green band. Fungi and & Krumbein 1997), hypersaline environments (Zalar chlorophycean algae, together forming a lichen et al. 1999a) and other substrates that are hard to association, occupy the black (2) and the white (3) colonise. Some of them, belonging to the order zones. The fungal hyphae in the dark zone are melan- Chaetothyriales, are encountered as opportunists on ised, while in the white zone they are colourless. The humans. The skin disease chromoblastomycosis has a hyaline fungi and part of the pigmented ones proba- meristematic invasive phase, the muriform cells bly represent different morphotypes of one and the (Matsumoto et al. 1984). The natural niche of these same lichen species, in which the pigmentation species is in the spines of cactus plants in semi-arid expressed in the upper layer is supposed to be a climates (Zeppenfeldt et al. 1994). In humans the response to higher light intensities. The cryptoen- thick melanised cell wall is supposed to protect the dolithic growth is a remarkable morphological adap- fungus from phagocytic action by oxygen radicals tation adopted by lichens to extreme conditions. They (Schnitzler et al. 1999). The ability to grow meris- loose their typical morphology and enter the porosity tematically, ensuring to the colonies an optimal of rocks to protect themselves to the hostile outside surface/volume ratio (Wollenzien et al. 1995), is climate. Nevertheless, they preserve the ability to hypothesized to enhance the ability to survive under form a thallus with characteristic morphology as soon conditions of stress such as high or low temperature, as they reach protected niches such as small depres- low water availability (Wollenzien et al. 1995), sions or crevices on rock surfaces, where epilithic acidity, nutrient deficiency (Sterflinger et al. 1999), structures can be observed. Thick-walled and dark- high UV exposure (Urzì et al. 1995) or high salt pigmented, non-lichenised fungi grow mixed with the concentration (Zalar et al. 1999c). In some fungi lichen-forming fungi in the black zone (2). These meristematic growth could be induced by acidifica- fungi, often showing meristematic growth in vitro, tion of the culture medium (Mendoza et al. 1993). are isolated as regular members of the lichen domi- Furthermore, black fungi that preserve meristematic nated cryptoendolithic community. The green (4) growth as a stable character are reported to tolerate zone is characterised by the presence of non- desiccation, UV exposure (Wollenzien et al. 1995) lichenised algae, among which the endemic chloro- and high temperature (Sterflinger 1998) better than phycean alga Hemichloris antarctica is predominant, lichens. and several of the most extremophilic prokaryotes Meristematic black fungi from the Antarctic known to date, viz. the cyanobacteria Chroococ- cryptoendolithic communities are fascinating and cidiopsis sp. and Gloeocapsa sp. (Friedmann 1982). poorly known microorganisms, adapted to environ- A further band has been occasionally observed when mental conditions that are even more hostile than Chroococcidiopsis sp. form a separate zone below those of the remaining rock-inhabiting fungi. Al- Hemichloris antarctica. though their actual limits of survival are not well The enzymatic abilities tested in some cryptoen- known, they seem to be, both from morphological dolithic fungi were found to be different among and physiological points of view, very well adapted species, so that micro- or nano-niches occupied by to withstand unfavourable conditions. This is exem- these fungi do not completely overlap (M. Fenice, plified by the fact that they express melanised thick pers. comm.). A conspicuous sign of microbial walls as a stable character, allowing them to resist colonisation macroscopically visible on the rock dryness and the UV irradiation that reaches them surface is the characteristic mosaic-like pattern
Recommended publications
  • Patellariaceae Revisited
    Mycosphere 6 (3): 290–326(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/7 Patellariaceae revisited Yacharoen S1,2, Tian Q1,2, Chomnunti P1,2, Boonmee S1, Chukeatirote E2, Bhat JD3 and Hyde KD1,2,4,5* 1Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3Formerly at Department of Botany, Goa University, Goa 403 206, India 4Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 5World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China Yacharoen S, Tian Q, Chomnunti P, Boonmee S, Chukeatirote E, Bhat JD, Hyde KD 2015 – Patellariaceae revisited. Mycosphere 6(3), 290–326, Doi 10.5943/mycosphere/6/3/7 Abstract The Dothideomycetes include several genera whose ascomata can be considered as apothecia and thus would be grouped as discomycetes. Most genera are grouped in the family Patellariaceae, but also Agrynnaceae and other families. The Hysteriales include genera having hysterioid ascomata and can be confused with species in Patellariaceae with discoid apothecia if the opening is wide enough. In this study, genera of the family Patellariaceae were re-examined and characterized based on morphological examination. As a result of this study the genera Baggea, Endotryblidium, Holmiella, Hysteropatella, Lecanidiella, Lirellodisca, Murangium, Patellaria, Poetschia, Rhizodiscina, Schrakia, Stratisporella and Tryblidaria are retained in the family Patellariaceae. The genera Banhegyia, Pseudoparodia and Rhytidhysteron are excluded because of differing morphology and/or molecular data.
    [Show full text]
  • 2006-2007 Science Planning Summaries
    Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the available indexes. Project Web Sites Find more information about 2006-2007 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2006-2007 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the USAP Program Indexes available indexes. Aeronomy and Astrophysics Dr. Bernard Lettau, Program Director (acting) Project Web Sites Biology and Medicine Dr. Roberta Marinelli, Program Director Find more information about 2006-2007 USAP projects by Geology and Geophysics viewing project web sites. Dr. Thomas Wagner, Program Director Glaciology Dr. Julie Palais, Program Director More Information Ocean and Climate Systems Additional information pertaining Dr. Bernhard Lettau, Program Director to the 2006-2007 Field Season. Artists and Writers Home Page Ms. Kim Silverman, Program Director Station Schedules USAP Station and Vessel Indexes Air Operations Staffed Field Camps Amundsen-Scott South Pole Station Event Numbering System McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Project Web Sites 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the Project Web Sites available indexes. Principal Investigator/Link Event No. Project Title Aghion, Anne W-218-M Works and days: An antarctic Project Web Sites chronicle Find more information about 2006-2007 USAP projects by Ainley, David B-031-M Adélie penguin response to viewing project web sites.
    [Show full text]
  • TAM Abstract Adams B
    Interdisciplinary Antarctic Earth Sciences Meeting and Shackleton Camp Planning Workshop Loveland, Colorado September 19-22, 2015 Agenda and Abstracts Agenda Saturday, Sept. 19 Time Activity place 3-7 pm Badge pickup, guest arrival, poster Heritage Lodge set up Dining tent 5:30 pm Shuttles to Sylvan Dale Hotels à Sylvan Dale 6 – 7:30 pm Dinner, cash bar Dining tent 7:30 – 9:30pm Cash bar, campfire Dining tent 8:30 & 9 pm Shuttles back to hotels Sylvan DaleàHotels Sunday, Sept. 20 Time Activity place 7 – 8:30 am Breakfast for overnight guests only 7:15 am Shuttles depart hotels Hotels à Sylvan Dale 7:30 – 8:30 Badge pickup & poster set up Heritage Lodge & tent 8:30 – 10:00 Session I Heritage Lodge 8:30 – 8:45 Opening Remarks 8:45 – 9:15 NSF remarks - Borg 9:15 – 9:45 Antar. Support Contr – Leslie, Jen, et al. 9:45 – 10:00 Polar Geospatial Center - Roth 10:00 – 10:30 Coffee/Snack Break 10:30 – 10:45 Polar Rock Repository - Grunow 10:45 – 12:00 John Calderazzo – Sci. Communication 12:00 – 1:30 pm Lunch Dining Tent 1:30 – 3:00 Session II Heritage Lodge Geological and Landscape Evolution 1:30 - 1:50 Thomson (invited) 1:50 - 2:10 Collinson (invited) 2:10 – 2:25 Flaig 2:25 – 2:40 Isbell 2:40 – 2:55 Graly 3:00 – 3:45 Coffee/Snack break 3:45 – 4:00 Putokonen 4:00 – 4:15 Sletten 4:15 – 4:35 Poster Introductions 4:35 – 6:00 Posters Dining tent 6:00 Dinner, cash bar Dining tent 8:30 & 9:00 Shuttles back to hotels Sylvan DaleàHotels 1 Monday, Sept.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Three New Genera in a Dothidealean Clade of Extremotolerant Fungi
    UvA-DARE (Digital Academic Repository) Drought meets acid: Three new genera in a dothidealean clade of extremotolerant fungi Selbmann, L.; de Hoog, G.S.; Zucconi, L.; Isola, D.; Ruisi, S.; Gerrits van den Ende, A.H.G.; Ruibal, C.; De Leo, F.; Urzi, C.; Onofri, S. DOI 10.3114/sim.2008.61.01 Publication date 2008 Document Version Final published version Published in Studies in Mycology Link to publication Citation for published version (APA): Selbmann, L., de Hoog, G. S., Zucconi, L., Isola, D., Ruisi, S., Gerrits van den Ende, A. H. G., Ruibal, C., De Leo, F., Urzi, C., & Onofri, S. (2008). Drought meets acid: Three new genera in a dothidealean clade of extremotolerant fungi. Studies in Mycology, 61(1), 1-20. https://doi.org/10.3114/sim.2008.61.01 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
    [Show full text]
  • Culture-Dependent and Amplicon Sequencing Approaches Reveal Diversity and Distribution of Black Fungi in Antarctic Cryptoendolithic Communities
    Journal of Fungi Article Culture-Dependent and Amplicon Sequencing Approaches Reveal Diversity and Distribution of Black Fungi in Antarctic Cryptoendolithic Communities Laura Selbmann 1,2, Gerardo A. Stoppiello 1, Silvano Onofri 1 , Jason E. Stajich 3,* and Claudia Coleine 1,* 1 Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; [email protected] (L.S.); [email protected] (G.A.S.); [email protected] (S.O.) 2 Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy 3 Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA * Correspondence: [email protected] (J.E.S.); [email protected] (C.C.); Tel.: +1-951-827-2363 (J.E.S.); +39-0761-357138 (C.C.) Abstract: In the harshest environmental conditions of the Antarctic desert, normally incompatible with active life, microbes are adapted to exploit the cryptoendolithic habitat (i.e., pore spaces of rocks) and represent the predominant life-forms. In the rocky niche, microbes take advantage of the thermal buffering, physical stability, protection against UV radiation, excessive solar radiation, and water retention—of paramount importance in one of the driest environments on Earth. In this work, high-throughput sequencing and culture-dependent approaches have been combined, for the first time, to untangle the diversity and distribution of black fungi in the Antarctic cryptoendolithic microbial communities, hosting some of the most extreme-tolerant microorganisms. Rock samples were collected in a vast area, along an altitudinal gradient and opposite sun exposure—known to influence microbial diversity—with the aim to compare and integrate results gained with the two Citation: Selbmann, L.; Stoppiello, Friedmanniomyces endolithicus G.A.; Onofri, S.; Stajich, J.E.; Coleine, approaches.
    [Show full text]
  • U.S. Advance Exchange of Operational Information, 2005-2006
    Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo.
    [Show full text]
  • Hysterobrevium Smilacis (Schwein.) E
    ©Salvador Tello Mora [email protected] Condiciones de uso Hysterobrevium smilacis (Schwein.) E. Boehm & C.L. Schoch, in Boehm, Mugambi, Miller, Huhndorf, Marincowitz, Spatafora & Schoch, Stud. Mycol. 64: 63 (2010) Hysteriaceae, Hysteriales, Incertae sedis, Dothideomycetes, Pezizomycotina, Ascomycota, Fungi ≡ Dialonectria smilacis (Schwein.) Cooke, Grevillea 12(no. 64): 111 (1884) = Gloniopsis curvata (Fr.) Sacc., Syll. fung. (Abellini) 2: 775 (1883) = Gloniopsis gerardiae Sacc., Syll. fung. (Abellini) 2: 774 (1883) = Gloniopsis gerardiana Sacc., Syll. fung. (Abellini) 2: 774 (1883) = Gloniopsis gloniopsis (W.R. Gerard) House, N.Y. St. Mus. Bull.: 235 (1920) ≡ Gloniopsis smilacis (Schwein.) Underw. & Earle, Bull. Alabama Agricultural Experiment Station 80: 196 (1897) ≡ Hypoderma smilacis (Schwein.) Rehm, Ber. naturhist. Augsburg 26: 80 (1881) ≡ Hypodermopsis smilacis (Schwein.) Rehm, Revis. gen. pl. (Leipzig) 3(3): 487 (1898) = Hysterium curvatum (Fr.) Duby, Mém. Soc. Phys. Hist. nat. Genève 16(1): 42 (1861) [1862] = Hysterium elongatum ß curvatum Fr., Elench. fung. (Greifswald) 2: 138 (1828) = Hysterium gloniopsis W.R. Gerard, in Peck, Ann. Rep. N.Y. St. Mus. nat. Hist. 31: 78 (1879) ≡ Hysterium smilacis Schwein., Schr. naturf. Ges. Leipzig 1: 49 (1822) = Hysterobrevium curvatum (Fr.) Math. & Granmo, Sluttrapport for artsprojektet sekksporresopper i Finnmark (Tromsø): 25 (2012) = Hysterographium curvatum (Fr.) Rehm, in Winter, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.3: 17 (1887) [1896] = Hysterographium gloniopsis (W.R. Gerard) Ellis & Everh., N. Amer. Pyren. (Newfield): 708 (1892) ≡ Hysterographium smilacis (Schwein.) Ellis & Everh., N. Amer. Pyren. (Newfield): 709 (1892) Material estudiado España, Huelva, Moguer, Arroyo de Mazagón, 29S PB9809, 42 m, sobre ramas secas de Ulex argenteus en dunas fijas con Pinus pinea, 13-I-2013, leg.
    [Show full text]
  • High Diversity and Morphological Convergence Among Melanised Fungi from Rock Formations in the Central Mountain System of Spain
    Persoonia 21, 2008: 93–110 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X371379 High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain C. Ruibal1, G. Platas2, G.F. Bills2 Key words Abstract Melanised fungi were isolated from rock surfaces in the Central Mountain System of Spain. Two hundred sixty six isolates were recovered from four geologically and topographically distinct sites. Microsatellite-primed biodiversity PCR techniques were used to group isolates into genotypes assumed to represent species. One hundred and sixty black fungi three genotypes were characterised from the four sites. Only five genotypes were common to two or more sites. Capnodiales Morphological and molecular data were used to characterise and identify representative strains, but morphology Chaetothyriales rarely provided a definitive identification due to the scarce differentiation of the fungal structures or the apparent Dothideomycetes novelty of the isolates. Vegetative states of fungi prevailed in culture and in many cases could not be reliably dis- extremotolerance tinguished without sequence data. Morphological characters that were widespread among the isolates included scarce micronematous conidial states, endoconidia, mycelia with dark olive-green or black hyphae, and mycelia with torulose, isodiametric or moniliform hyphae whose cells develop one or more transverse and/or oblique septa. In many of the strains, mature hyphae disarticulated, suggesting asexual reproduction by a thallic micronematous conidiogenesis or by simple fragmentation. Sequencing of the internal transcribed spacers (ITS1, ITS2) and 5.8S rDNA gene were employed to investigate the phylogenetic affinities of the isolates. According to ITS sequence alignments, the majority of the isolates could be grouped among four main orders of Pezizomycotina: Pleosporales, Dothideales, Capnodiales, and Chaetothyriales.
    [Show full text]
  • Terra Antartica Reports No. 16
    © Terra Antartica Publication Terra Antartica Reports No. 16 Geothematic Mapping of the Italian Programma Nazionale di Ricerche in Antartide in the Terra Nova Bay Area Introductory Notes to the Map Case Editors C. Baroni, M. Frezzotti, A. Meloni, G. Orombelli, P.C. Pertusati & C.A. Ricci This case contains four geothematic maps of the Terra Nova Bay area where the Italian Programma Nazionale di Ricerche in Antartide (PNRA) begun its activies in 1985 and the Italian coastal station Mario Zucchelli was constructed. The production of thematic maps was possible only thanks to the big financial and logistical effort of PNRA, and involved many persons (technicians, field guides, pilots, researchers). Special thanks go to the authors of the photos: Carlo Baroni, Gianni Capponi, Robert McPhail (NZ pilot), Giuseppe Orombelli, Piero Carlo Pertusati, and PNRA. This map case is dedicated to the memory of two recently deceased Italian geologists who significantly contributed to the geological mapping in Antarctica: Bruno Lombardo and Marco Meccheri. Recurrent acronyms ASPA Antarctic Specially Protected Area GIGAMAP German-Italian Geological Antarctic Map Programme HSM Historical Site or Monument NVL Northern Victoria Land PNRA Programma Nazionale di Ricerche in Antartide USGS United States Geological Survey Terra anTarTica reporTs, no. 16 ISBN 978-88-88395-13-5 All rights reserved © 2017, Terra Antartica Publication, Siena Terra Antartica Reports 2017, 16 Geothematic Mapping of the Italian Programma Nazionale di Ricerche in Antartide in the Terra Nova
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Cotnparison Between Glacier Ice Velocities Inferred Frotn GPS and Sequential Satellite Itnages
    Annals ifGlaciology 27 1998 © International Glaciological Society Cotnparison between glacier ice velocities inferred frotn GPS and sequential satellite itnages MASSIMO FREZZOTTI/ ALEsSANDRO CAPRA,2 LUCA VITTUARI2 I ENEA Dip. Ambiente, CRE Casaccia, PO. Box 2400, 1-00100 Rome AD, Italy 2 DISTART, University ifBologna, Viale Risorgimento 2, 1-40136 Bologna, Italy ABSTRACT. Measurements derived from remote-sensing research and field surveys have provided new ice-velocity data for David Glacier--Drygalski Ice Tongue and Priest­ ley and Reeves Glaciers, Antarctica. Average surface velocities were determined by track­ ing crevasses and other patterns moving with the ice in two sequential satellite images. Velocity measurements were made for different time intervals (1973- 90, 1990- 92, etc.) using images from various satellite sensors (Landsat 1 MSS, LandsatTM, SPOT XS). In a study of the dynamics ofDavid Glacier- Drygalski Ice Tongue and Priestley and Reeves G laciers, global positioning system (GPS) measurements were made between 1989 and 1994. A number of points were measured on each glacier: five points on David Glacier, three on Drygalski Ice Tongue, two on Reeves Glacier- Nansen Ice Sheet and two on Priestley Glacier. Comparison of the results from GPS data and feature-tracking in areas close to image tie-points shows that errors in measured average velocity from the feature­ tracking may be as little as ± 15-20 m a I. In areas far from tie-points, such as the outer part of Drygalski Ice Tonpue, comparison of the two types of measurements shows differ­ ences of about ± 70 m a - . INTRODUCTION ments from field surveys (Bindschadler and others, 1994, 1996).
    [Show full text]