The Cryosphere, 12, 1121–1135, 2018 https://doi.org/10.5194/tc-12-1121-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Snowmobile impacts on snowpack physical and mechanical properties Steven R. Fassnacht1,2,3,4, Jared T. Heath1,5, Niah B. H. Venable1,3, and Kelly J. Elder6 1Department of Ecosystem Science and Sustainability – Watershed Science, Colorado State University, Fort Collins, 80523-1476 CO, USA 2Cooperative Institute for Research in the Atmosphere, Fort Collins, 80523-1375 CO, USA 3Natural Resources Ecology Laboratory, Fort Collins, 80523-1499 CO, USA 4Geographisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany 5City of Fort Collins, Water Resources & Treatment, Fort Collins, 80521 CO, USA 6Rocky Mountain Research Station, US Forest Service, Fort Collins, 80526 CO, USA Correspondence: Steven R. Fassnacht (
[email protected]) Received: 21 February 2017 – Discussion started: 18 April 2017 Revised: 20 February 2018 – Accepted: n 6 March – Published: 28 March 2018 Abstract. Snowmobile use is a popular form of winter recre- 1 Introduction ation in Colorado, particularly on public lands. To examine the effects of differing levels of use on snowpack properties, In the United States snowmobiling accounts for between experiments were performed at two different areas, Rabbit USD 7 billion (American Council of Snowmobile Associa- Ears Pass near Steamboat Springs and at Fraser Experimen- tions, 2014) and USD 26 billion (International Snowmobile tal Forest near Fraser, Colorado USA. Differences between Manufacturers Association, 2016) in annual revenue, and no use and varying degrees of snowmobile use (low, medium much of the snowmobile use occurs on public land.