A Revised Limbic System Model for Memory, Emotion and Behaviour
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microstructural White Matter Alterations and Hippocampal Volumes Are
6 178 S Fjalldal and others Diffusion tensor imaging in 178:6 577–587 Clinical Study craniopharyngioma Microstructural white matter alterations and hippocampal volumes are associated with cognitive deficits in craniopharyngioma S Fjalldal1, C Follin1, D Svärd2, L Rylander3, S Gabery4, Å Petersén4, D van Westen2, P C Sundgren2,5, I M Björkman-Burtscher2,5, J Lätt5, B Ekman6, A Johanson7 and E M Erfurth1 1Department of Endocrinology, Skåne University Hospital, Lund, Sweden, 2Department of Diagnostic Radiology, Clinical Sciences, 3Division of Occupational and Environmental Medicine, 4Translational Neuroendocrine Research Unit, Department 5 of Experimental Medical Science, Lund University, Lund, Sweden, Department of Medical Imaging and Physiology, Correspondence 6 Skåne University Hospital, Lund, Sweden, Department of Endocrinology and Medical and Health Sciences, should be addressed 7 Linköping University, Linköping, Sweden, and Department of Psychology and Psychiatry, Skåne University Hospital, to E M Erfurth Lund, Sweden Email [email protected] Abstract Context: Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. Objective: To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. Design: A cross-sectional study with a median follow-up time of 22 (6–49) years after operation. Setting: The South Medical Region of Sweden (2.5 million inhabitants). Participants: Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958–2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Main outcome measures: Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal European Journal European of Endocrinology volumetry. -
From Human Emotions to Robot Emotions
1 American Association for Artificial Intelligence – Spring Symposium 3/2004, Stanford University – Keynote Lecture. From Human Emotions to Robot Emotions Jean-Marc Fellous The Salk Institute for Neurobiological Studies 10010 N. Torrey Pines Road, la Jolla, CA 92037 [email protected] Abstract1 open a new window on the neural bases of emotions that may offer new ways of thinking about implementing robot- The main difficulties that researchers face in understanding emotions. emotions are difficulties only because of the narrow- mindedness of our views on emotions. We are not able to Why are emotions so difficult to study? free ourselves from the notion that emotions are necessarily human emotions. I will argue that if animals have A difficulty in studying human emotions is that here are emotions, then so can robots. Studies in neuroscience have significant individual differences, based on experiential as shown that animal models, though having limitations, have well as genetic factors (Rolls, 1998; Ortony, 2002; significantly contributed to our understanding of the Davidson, 2003a, b; Ortony et al., 2004). My fear at the functional and mechanistic aspects of emotions. I will sight of a bear may be very different from the fear suggest that one of the main functions of emotions is to experienced by a park-ranger who has a better sense for achieve the multi-level communication of simplified but high impact information. The way this function is achieved bear-danger and knows how to react. My fear might also be in the brain depends on the species, and on the specific different from that of another individual who has had about emotion considered. -
10041.Full.Pdf
The Journal of Neuroscience, July 23, 2014 • 34(30):10041–10054 • 10041 Systems/Circuits Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders Sarah R. Heilbronner and Suzanne N. Haber Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642 The cingulum bundle (CB) is one of the brain’s major white matter pathways, linking regions associated with executive function, decision-making, and emotion. Neuroimaging has revealed that abnormalities in particular locations within the CB are associated with specific psychiatric disorders, including depression and bipolar disorder. However, the fibers using each portion of the CB remain unknown. In this study, we used anatomical tract-tracing in nonhuman primates (Macaca nemestrina, Macaca fascicularis, Macaca mulatta)toexaminetheorganizationofspecificcingulate,noncingulatefrontal,andsubcorticalpathwaysthroughtheCB.Thegoalswere as follows: (1) to determine connections that use the CB, (2) to establish through which parts of the CB these fibers travel, and (3) to relate the CB fiber pathways to the portions of the CB identified in humans as neurosurgical targets for amelioration of psychiatric disorders. Results indicate that cingulate, noncingulate frontal, and subcortical fibers all travel through the CB to reach both cingulate and noncin- gulate targets. However, many brain regions send projections through only part, not all, of the CB. For example, amygdala fibers are not present in the caudal portion of the dorsal CB. These results allow segmentation of the CB into four unique zones. We identify the specific connections that are abnormal in psychiatric disorders and affected by neurosurgical interventions, such as deep brain stimulation and cingulotomy. -
What Can Be Learned from White Matter Alterations in Antisocial Girls Willeke M
Menks WM, Raschle NM. J Neurol Neuromedicine (2017) 2(7): 16-20 Neuromedicine www.jneurology.com www.jneurology.com Journal of Neurology & Neuromedicine Mini Review Open Access What can be learned from white matter alterations in antisocial girls Willeke M. Menks1, Christina Stadler1 and Nora M. Raschle1 1Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital Basel, Switzerland. Article Info ABSTRACT Article Notes Antisocial behavior in youths constitutes a major public health problem Received: June 17, 2017 worldwide. Conduct disorder is a severe variant of antisocial behavior with higher Accepted: July 31, 2017 prevalence rates for boys (12%) as opposed to girls (7%). A better understanding *Correspondence: of the underlying neurobiological mechanisms of conduct disorder is warranted Dr. Willeke Menks, PhD to improve identification, diagnosis, or treatment. Functional and structural Department of Child and Adolescent Psychiatry (KJPK), neuroimaging studies have indicated several key brain regions within the limbic Psychiatric University Clinics Basel (UPK) system and prefrontal cortex that are altered in youths with conduct disorder. Schanzenstrasse 13, CH-4056 Basel, Switzerland Examining the structural connectivity, i.e. white matter fiber tracts connecting Tel. +41 61 265 89 76 these brain areas, may further inform about the underlying neural mechanisms. Fax +41 61 265 89 61 Diffusion tensor imaging (DTI) is a non-invasive technique that can evaluate the © 2017 Menks WM & Raschle NM. This article is distributed white matter integrity of fiber tracts throughout the brain. To date, DTI studies have under the terms of the Creative Commons Attribution 4.0 found several white matter tracts that are altered in youths with conduct disorder. -
White Matter Abnormalities in Adults with Bipolar Disorder Type-II
www.nature.com/scientificreports OPEN White matter abnormalities in adults with bipolar disorder type‑II and unipolar depression Anna Manelis1*, Adriane Soehner1, Yaroslav O. Halchenko2, Skye Satz1, Rachel Ragozzino1, Mora Lucero1, Holly A. Swartz1, Mary L. Phillips1 & Amelia Versace1 Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type‑II (BD‑II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD‑II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial difusivity (RD), axial difusivity (AD), and mean difusivity (MD) across BD‑II, UD, and HC groups in the white matter tracts identifed by the XTRACT tool in FSL. Individuals with BD‑II (n = 18), UD (n = 23), and HC (n = 24) underwent Difusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD‑II and UD vs. HC across multiple tracts. While BD‑II had signifcantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had signifcantly lower FA and higher RD values than BD‑II in the area of intersections between the right arcuate, inferior fronto‑occipital and uncinate fasciculi and forceps minor. -
The Papez Circuit & Perforant Pathway
The Papez Circuit & Perforant Pathway Neurology/Neurosciences - CME/MOC > Sleep, Memory, Movement > Sleep, Memory, Movement HIPPOCAMPAL PHYSIOLOGY: THE PAPEZ CIRCUIT & PERFORANT PATHWAY THE PAPEZ CIRCUIT: OVERVIEW Papez Circuit Physiology • It is the fundamental extra-hippocampal circuitry, which Papez introduced in 1937. • Originally believed to play a fundamental role in emotional processing/regulation but is now understood to be the cornerstone of memory processing/consolidation, instead. Steps The entorhinal cortex -> hippocampus -> mammillary nuclei -> anterior thalamic nuclei -> cingulate gyrus -> back to the entorhinal cortex* THE PERFORANT PATHWAY: OVERVIEW Perforant Pathway • The key intra-hippocampal circuitry (so-named because the entorhinal cortex projects through (perforates) the subiculum). • Whereas most cortical projections are bidirectional, the perforant pathway follows a specific unidirectional progression. Steps • Hippocampus: The dentate gyrus -> CA3 -> CA1 (via Schaffer collaterals) -> subiculum THE PAPEZ CIRCUIT: ANATOMY Key structures: the parahippocampal gyrus, the entorhinal cortex, the hippocampus, the anterior thalamic nucleus, mammillary nucleus, and the cingulate gyrus and specify the neocortex (external to it). • The entorhinal cortex projects to the hippocampus. • The hippocampus projects via the fornix to the mammillary nuclei. • The mammillary nuclei project to the anterior thalamic nuclei via the mammillothalamic fasciculus (aka the Vicq d'Azyr bundle). • The anterior thalamic nuclei project to the cingulate gyrus. • The cingulate gyrus projects back to the entorhinal cortex via the cingulum to close the Papez circuit loop. The fornix divides into: 1 / 2 • Crus — vertical ascent. • Body — anterior projection underneath the corpus callosum. • Column — descent. Note that the fornix descends both anterior and posterior to the anterior commissure. Key extra-hippocampal projections. • The cingulate gyrus has reciprocal connections with the neocortex. -
Andrew Rosen the Architecture of the Nervous System: • Central Nervous
Andrew Rosen The Architecture of the Nervous System: Central Nervous System (CNS) – Includes the brain and spinal cord Peripheral Nervous System (PNS) – All nerves elsewhere and are connected to the CNS via the spinal cord o Composed of the Somatic Nervous System (SNS), which has the efferent nerves that control the skeletal muscles and afferent nerves that carry information from the sense organs to CNS o Also composed of the Autonomous Nervous System (ANS), which has the efferent nerves that regulate the glands and smooth muscles of internal organs and vessels as well as afferent nerves that bring the CNS information about the internal systems . Divided into the sympathetic branch “Revs” body up for an action . Also divided into parasympathetic branch Restores the body’s internal activities to normal after an action Brain is in cerebrospinal fluid that acts as a shock absorber Anatomy of the Brain: Spinal cord that goes into brain forms the brain stem Medulla is at the bottom of the brain stem o Controls breathing, blood circulation, and maintains balance Pons is above the medulla o Controls attentiveness and governs sleep/dreaming Behind the brain stem is the cerebellum o Controls balance, coordination, and spatial reasoning The midbrain and thalamus are on top of the pons o Relay information to the forebrains o Midbrain regulates experience of pain and moods The forebrain is on top of all of these o Outer part of the forebrain is the cerebral cortex . High surface area . Deepest groove is the longitudinal fissure that splits the left cerebral hemisphere from the right . -
Lecture 12 Notes
Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G. -
White Matter Tracts - Brain A143 (1)
WHITE MATTER TRACTS - BRAIN A143 (1) White Matter Tracts Last updated: August 8, 2020 CORTICOSPINAL TRACT .......................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 FUNCTION ............................................................................................................................................. 1 UNCINATE FASCICULUS ........................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 DTI PROTOCOL ...................................................................................................................................... 4 FUNCTION .............................................................................................................................................. 4 DEVELOPMENT ....................................................................................................................................... 4 CLINICAL SIGNIFICANCE ........................................................................................................................ 4 ARTICLES .............................................................................................................................................. -
Remember the Limbic System?: Aftermr the First Generalized Anatomy Seizure Oc- and Pathology Curred
508 THUERL AJNR: 24, March 2003 508 THUERL AJNR: 24, March 2003 FIG 1. Initial MR images obtained 1 day afterF theIG 1. first Initial generalized MR images seizure obtained oc- 1 day Remember the Limbic System?: afterMR the first generalized Anatomy seizure oc- and Pathology curred. A, Axialcurred.fluid-attenuated inversion recov- ery imageA, Axial (9000/110fluid-attenuated [TR/TE]; inversion inversion recov- time,ery 2261 image ms) shows (9000/110 a slightly [TR/TE]; elevated inversion signaltime, intensity 2261 of ms) both shows hippocampal a slightly forma- elevated Review of Structures Involved in Emotiontionssignal (black intensity arrows)andamygdala( of both hippocampalwhite forma-and Memory Formation arrowstions). (black arrows)andamygdala(white B,arrows Coronal). conventional T2-weighted turbo spin-echoB, Coronal image conventional (4462/120/3 T2-weighted [TR/ Jane Ball,BS; David Sawyer,BS; Adam Blanchard,MD; KrystleTE/NEX]) Barhaghi,MDturbo shows spin-echo no signal image intensity (4462/120/3 abnor- [TR/; Enrique Palacios,MD; Jeremy Nguyen,MD. mality.TE/NEX]) shows no signal intensity abnor- Tulane University School of Medicinemality. Department of Radiology Introduction Structural Review Limbic Encephalitis Klüver-Bucy Syndrome Rather than a single, defined structure within the brain, the Klüver-Bucy Syndrome (KBS) is a clinical diagnosis limbic system is a collection of interrelated structures characterized by visual agnosia, hyperorality, involved in learning, memory, emotional responses, hypersexuality, placidity, abnormal dietary changes, homeostasis and primitive drives. Different reference hypermetamorphosis, dementia, and amnesia. Limbic sources include and exclude structures within the limbic encephalitis is the most common cause of KBS, and KBS system. Some structures share formations or groupings has been associated with other neurological disorders and have additional functions beyond their roles in the including traumatic brain injury, anoxia-ischemic limbic system. -
BIPN100 F15 Human Physiol I Lecture 7: Autonomic Nervous System & Limbic System P
BIPN100 F15 Human Physiol I Lecture 7: Autonomic Nervous System & Limbic System p. 1 Terms you should understand: autonomic nervous system, sympathetic nervous system, parasympathetic nervous system, ganglion (ganglia), preganglionic neuron, postganglionic neuron, vagus nerve, cholinergic, nicotinic receptor, muscarinic receptor, adrenergic, epinephrine (Epi), norepinephrine (NorEpi), α-adrenergic receptor, ß-adrenergic receptor, agonist, d-tubocurarine, α- Bungarotoxin, atropine, adrenal medulla, limbic system, solitary nucleus, vagus nerve, hypothalamus (lateral and ventromedial), aphagia, hyperphagia, amygdala, cingulate gyrus, frontal cortex. I. The two divisions of the autonomic nervous system (sympathetic and parasympathetic) supply most of the nervous control for the involuntary ("vegetative" or “visceral”) functions of the body. They are a second efferent system (in addition to "voluntary" motor output from brain and spinal cord), sending signals that modulate activity of glands or muscles, usually smooth muscles. A. These two systems work together to produce homeostasis; e.g., the balance between the two systems keeps blood pressure, body temperature, and acid-base balance constant. B. Both branches of the autonomic nervous system consist of a two-neuron chain between the central nervous system and the periphery. The somata of the pre-ganglionic neurons in both branches of the autonomic nervous system lie within the brain or the spinal cord. Autonomic nervous system Somatic motor Sympathetic Parasympathetic Central nervous system Sympathetic Fig. 7.1 Peripheral chain nervous ganglion system Parasympathetic (near spinal gangion cord) (near taraget) Target Skeletal Smooth and cardiac muscle; glands muscle C. Preganglionic neurons (somata inside the CNS) synapse with postganglionic neurons (somata outside the CNS). 1. Sympathetic postganglionic cell bodies are in ganglia near the CNS. -
Circuits That Link the Cerebral Cortex to the Adrenal Medulla COLLOQUIUM PAPER
The mind–body problem: Circuits that link the cerebral cortex to the adrenal medulla COLLOQUIUM PAPER Richard P. Duma,b, David J. Levinthala,b,c, and Peter L. Stricka,b,1 aUniversity of Pittsburgh Brain Institute, Systems Neuroscience Center, Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; bDepartment of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and cDivision of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Robert H. Wurtz, National Institutes of Health, Bethesda, MD, and approved October 4, 2019 (received for review July 31, 2019) Which regions of the cerebral cortex are the origin of descending shortcoming has been overcome by the introduction of neuro- commands that influence internal organs? We used transneuronal tropic viruses as transneuronal tracers (4–6). transport of rabies virus in monkeys and rats to identify regions of Here,wereviewsomeofourresultsusingtheN2cstrainofrabies cerebral cortex that have multisynaptic connections with a major virus (RV) to reveal the areas of the cerebral cortex that influence sympathetic effector, the adrenal medulla. In rats, we also examined the adrenal medulla of the monkey and rat. We will also review the multisynaptic connections with the kidney. In monkeys, the cortical results of RV transport from the kidney in the rat. The adrenal influence over the adrenal medulla originates from 3 distinct networks medulla and kidney are controlled exclusively by sympathetic ef- that are involved in movement, cognition, and affect. Each of these ferents and are therefore, ideal for defining the cortical areas that networks has a human equivalent.