Visser Dissertation.Pdf (2.322Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles. -
Platform for a Technological Leap in Antibiotics
Columns CHIMIA 2015, 69, No. 12 809 doi:10.2533/chimia.2015.809 Chimia 69 (2015) 809–811 © Schweizerische Chemische Gesellschaft biotechnet Switzerland Hot from the press! Platform for a Technological Leap in Antibiotics as the microbiologist Stewart Thomas Cole, Head of the Cole Laboratory at EPFL – are working on the development of drugs Elsbeth Heinzelmann, science + technology journalist to treat MDR-TB. In a joint start-up meeting in Bern in early au- tumn 2015, partners from academia and industry explained their Abstract: NTN Swiss Biotech™ brings together the Swiss views and objectives in forging plans for a common Antibiotics Biotech Association SBA, which is involved in regulatory, finan- Platform. cial and legal issues, and biotechnet Switzerland, which is ac- tive in translational R&D, to provide a technology base for joint projects. Biotechnet aims to push promising domains by creat- Everyone Contributes Individual Excellence ing topic-oriented platforms that enable academia and industry to work together to produce R&D results of major importance to The Center of Organic and Medicinal Chemistry (ZHW Wae- society and the economy. The first activity initiated by biotech- denswil) places particular emphasis on the design and synthesis net is the Antibiotics Platform that has now been launched. part of the drug discovery process. In order to improve the po- Keywords: Antimicrobial-resistant organisms · Gram-negative tency, selectivity and pharmacokinetic profiles of modulators of bacteria · Klebsiella pneumoniae · Multidrug-resistant strains · validated drug targets, the group rationally designs and synthe- Pathogenesis of tuberculosis sizes novel scaffolds and focused libraries based on X-ray data of co-crystal structures. -
Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy. -
Covalent Agonists for Studying G Protein-Coupled Receptor Activation
Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class -
Stability of Zopiclone in Whole Blood Studies from a Forensic Perspective
Linköping Studies in Health Sciences, Thesis No. 113 Stability of zopiclone in whole blood ‐ Studies from a forensic perspective Gunnel Nilsson Division of Drug Research Department of Medical and Health Sciences Linköping University, Sweden Linköping 2010 Supervisors Robert Kronstrand, Associate Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Johan Ahlner, Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Fredrik C. Kugelberg, Associate Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Gunnel Nilsson, 2010 Published article has been reprinted with permission of the copyright holder. Paper I © 2010 Elsevier, Forensic Science International Printed in Sweden by LiU‐Tryck, Linköping, Sweden, 2010 ISBN 978‐91‐7393‐339‐1 ISSN 1100‐6013 Dala‐Gård Ring the bells that still can ring Forget your perfect offering There is a crack in everything That’s how the light gets in Anthem by Leonard Cohen Contents CONTENTS ABSTRACT ............................................................................................................................. 1 POPULÄRVETENSKAPLIG SAMMANFATTNING..................................................... 3 LIST OF PAPERS ................................................................................................................... 5 ABBREVIATIONS ................................................................................................................ -
Essential Role of the Cytochrome P450 CYP4F22 in the Production of Acylceramide, the Key Lipid for Skin Permeability Barrier Formation
Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation Yusuke Ohnoa, Shota Nakamichia, Aya Ohkunia, Nozomi Kamiyamaa, Ayano Naoeb, Hisashi Tsujimurab, Urara Yokoseb, Kazumitsu Sugiurac, Junko Ishikawab, Masashi Akiyamac, and Akio Kiharaa,1 aLaboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan; bKao Corporation, Haga-gun, Tochigi 321-3497, Japan; and cDepartment of Dermatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved May 21, 2015 (received for review February 19, 2015) A skin permeability barrier is essential for terrestrial animals, and its lamellae and/or to stabilize the multiple lipid layers. Linoleic impairment causes several cutaneous disorders such as ichthyosis and acid is one of the essential FAs, and its deficiency causes ich- atopic dermatitis. Although acylceramide is an important lipid for the thyosis symptoms resulting from a failure to form normal acyl- skin permeability barrier, details of its production have yet to be de- ceramide (8). Ichthyosis is a cutaneous disorder accompanied termined, leaving the molecular mechanism of skin permeability bar- by dry, thickened, and scaly skin; it is caused by a barrier ab- rier formation unclear. Here we identified the cytochrome P450 gene normality. In patients who have atopic dermatitis, both total CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as ceramide levels and the chain length of ceramides are de- the long-sought fatty acid ω-hydroxylase gene required for acylcer- creased, and ceramide composition is altered also (9–11). -
Pharmacology Part 2: Introduction to Pharmacokinetics
J of Nuclear Medicine Technology, first published online May 3, 2018 as doi:10.2967/jnmt.117.199638 PHARMACOLOGY PART 2: INTRODUCTION TO PHARMACOKINETICS. Geoffrey M Currie Faculty of Science, Charles Sturt University, Wagga Wagga, Australia. Regis University, Boston, USA. Correspondence: Geoff Currie Faculty of Science Locked Bag 588 Charles Sturt University Wagga Wagga 2678 Australia Telephone: 02 69332822 Facsimile: 02 69332588 Email: [email protected] Foot line: Introduction to Pharmacokinetics 1 Abstract Pharmacology principles provide key understanding that underpins the clinical and research roles of nuclear medicine practitioners. This article is the second in a series of articles that aims to enhance the understanding of pharmacological principles relevant to nuclear medicine. This article will build on the introductory concepts, terminology and principles of pharmacodynamics explored in the first article in the series. Specifically, this article will focus on the basic principles associated with pharmacokinetics. Article 3 will outline pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in general nuclear medicine, the fourth pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in nuclear cardiology, the fifth the pharmacology related to contrast media associated with computed tomography (CT) and magnetic resonance imaging (MRI), and the final article will address drugs in the emergency trolley. 2 Introduction As previously outlined (1), pharmacology is the scientific study of the action and effects of drugs on living systems and the interaction of drugs with living systems (1-7). For general purposes, pharmacology is divided into pharmacodynamics and pharmacokinetics (Figure 1). The principle of pharmacokinetics is captured by philosophy of Paracelsus (medieval alchemist); “only the dose makes a thing not a poison” (1,8,9). -
Ontogeny of Plasma Proteins, Albumin and Binding of Diazepam, Cyclosporine, and Deltamethrin
nature publishing group Basic Science Investigation Articles Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin Pankaj K. Sethi1,2, Catherine A. White1, Brian S. Cummings1, Ronald N. Hines3–5, Srinivasa Muralidhara1 and James V. Bruckner1 BACKGROUND: To characterize the ontogeny of plasma for example, have been attributed to significant elevations albumin and total proteins, due to the lack of a comprehensive in serum concentrations of unbound parent compound and pediatric database. Secondly, to establish the magnitude and N-desmethyldiazepam, its major active metabolite (7). duration of maturational changes in binding of highly-bound There are number of factors that influence plasma binding of drugs/chemicals. drugs and other chemicals, some of which can be age-related. METHODS: Anonymized plasma samples from 296 donors These include the drug and its concentration, the presence of were pooled in 6 age brackets from birth to adolescence. Total binding competitors, the type and quantity of plasma protein, protein and albumin levels were measured in each age group, and the proteins’ affinity for the drug. Nau et al. (7) observed a as was the age-dependency of plasma binding of diazepam twofold increase in the free fraction of diazepam in the serum (DZP), cyclosporine (CYC), and deltamethrin (DLM), a pyre- of neonates that accompanied marked increases in free fatty throid insecticide. acids and bilirubin, competitors for albumin-binding sites. RESULTS: Plasma levels of albumin and total proteins steadily Albumin levels progressively rose during a 6-d postgestation increased for the first 1–3 y of life. Unbound DZP and CYC monitoring period, but remained significantly lower than in fractions were elevated three- to fourfold in neonates, but adults. -
Novel Antibiotics for Multidrug-Resistant Gram- Positive Microorganisms
Review Novel Antibiotics for Multidrug-Resistant Gram- Positive Microorganisms Despoina Koulenti 1,2,*, Elena Xu 1, Isaac Yin Sum Mok 1,†, Andrew Song 1,†, Drosos E. Karageorgopoulos 3, Apostolos Armaganidis 2, Jeffrey Lipman 1,4,5,‡ and SotiriosTsiodras 3,‡ 1 UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia 2 2nd Critical Care Department, Attikon University Hospital, 12462 Athens, Greece 3 4th Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece 4 Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, 4029 Brisbane, Australia 5 Anesthesiology and Critical Care, Centre Hospitalier Universitaire De Nîmes (CHU), University of Montpellier, 30029 Nîmes, France * Correspondence: [email protected] † Equal contribution-both 3rd authors. ‡ They are joint senior authors. Received: 13 July 2019; Accepted: 15 August 2019; Published: 18 August 2019 Abstract: Increasing multidrug-resistance to Gram-positive pathogens, particularly to staphylococci, enterococci and streptococci, is a major problem, resulting in significant morbidity, mortality and healthcare costs. In recent years, only a small number of novel antibiotics effective against Gram-positive bacteria has been approved. This review will discuss the current evidence for novel branded antibiotics that are highly effective in the treatment of multidrug-resistant infections by Gram-positive pathogens, namely ceftobiprole, ceftaroline, telavancin, oritavancin, dalbavancin, tedizolid, besifloxacin, delafloxacin, ozenoxacin, and omadacycline. The mechanism of action, pharmacokinetics, microbiological spectrum, efficacy and safety profile will be concisely presented. As for any emerging antibiotic agent, resistance is likely to develop against these highly effective antibiotics. Only through appropriate dosing, utilization and careful resistance development monitoring will these novel antibiotics continue to treat Gram-positive pathogens in the future. -
Membrane Protein Production for Structural Analysis
Chapter 1 Membrane Protein Production for Structural Analysis Isabelle Mus-Veteau, Pascal Demange and Francesca Zito 1.1 Introduction Integral membrane proteins (IMPs) account for roughly 30 % of all open reading frames in fully sequenced genomes (Liu and Rost 2001). These proteins are of main importance to living cells. They are involved in fundamental biological processes like ion, water, or solute transport, sensing changes in the cellular environment, signal transduction, and control of cell–cell contacts required to maintain cellular homeostasis and to ensure coordinated cellular activity in all organisms. IMP dys- functions are responsible for numerous pathologies like cancer, cystic fibrosis, epi- lepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer diseases. How- ever, studies on these and other disorders are hampered by a lack of information about the involved IMPs. Thus, knowing the structure of IMPs and understanding their molecular mechanism not only is of fundamental biological interest but also holds great potential for enhancing human health. This is of paramount importance in the pharmaceutical industry, which produces many drugs that bind to IMPs, and recognizes the potential of many recently identified G-protein-coupled receptors (GPCRs), ion channels, and transporters, as targets for future drugs. GPCR, which account for 50 % of all drug targets, is one of the largest and most diverse IMP families encoded by more than 800 genes in the human genome (Fredriksson et al. 2003; Lundstrom 2006). However, whereas high-resolution structures are avail- able for a myriad of soluble proteins (more than 42,000 in the Protein Data Bank, I. Mus-Veteau () Institute for Molecular and Cellular Pharmacology, UMR-CNRS 7275, University of Nice-Sophia Antipolis, Valbonne, France e-mail: [email protected] P. -
Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful. -
Resistance to Cancer Chemotherapy
Alfarouk et al. Cancer Cell Int (2015) 15:71 DOI 10.1186/s12935-015-0221-1 REVIEW Open Access Resistance to cancer chemotherapy: failure in drug response from ADME to P‑gp Khalid O Alfarouk1*, Christian‑Martin Stock2, Sophie Taylor3, Megan Walsh3, Abdel Khalig Muddathir4, Daniel Verduzco5, Adil H H Bashir1, Osama Y Mohammed6, Gamal O Elhassan7,8, Salvador Harguindey9, Stephan J Reshkin10, Muntaser E Ibrahim1 and Cyril Rauch3 Abstract Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer. Keywords: Drug, Resistance, Pharmacokinetics, ADME, pH, MDR Background Macroscopic (systemic) resistance [host–related In US only, the newly diagnosed cancer patient is factors] 1,665,540 every year and the estimated death is 585,720 One of the major effects of host-related factors that [1] which are increasing as countries become more devel- determine the activity of the drug is pharmacokinetic. oped and more people reach advanced ages. Therefore, Pharmacokinetics is defined as the action of the body in many efforts are being done in the war against cancer [2].