Novel Antibiotics for Multidrug-Resistant Gram- Positive Microorganisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Platform for a Technological Leap in Antibiotics
Columns CHIMIA 2015, 69, No. 12 809 doi:10.2533/chimia.2015.809 Chimia 69 (2015) 809–811 © Schweizerische Chemische Gesellschaft biotechnet Switzerland Hot from the press! Platform for a Technological Leap in Antibiotics as the microbiologist Stewart Thomas Cole, Head of the Cole Laboratory at EPFL – are working on the development of drugs Elsbeth Heinzelmann, science + technology journalist to treat MDR-TB. In a joint start-up meeting in Bern in early au- tumn 2015, partners from academia and industry explained their Abstract: NTN Swiss Biotech™ brings together the Swiss views and objectives in forging plans for a common Antibiotics Biotech Association SBA, which is involved in regulatory, finan- Platform. cial and legal issues, and biotechnet Switzerland, which is ac- tive in translational R&D, to provide a technology base for joint projects. Biotechnet aims to push promising domains by creat- Everyone Contributes Individual Excellence ing topic-oriented platforms that enable academia and industry to work together to produce R&D results of major importance to The Center of Organic and Medicinal Chemistry (ZHW Wae- society and the economy. The first activity initiated by biotech- denswil) places particular emphasis on the design and synthesis net is the Antibiotics Platform that has now been launched. part of the drug discovery process. In order to improve the po- Keywords: Antimicrobial-resistant organisms · Gram-negative tency, selectivity and pharmacokinetic profiles of modulators of bacteria · Klebsiella pneumoniae · Multidrug-resistant strains · validated drug targets, the group rationally designs and synthe- Pathogenesis of tuberculosis sizes novel scaffolds and focused libraries based on X-ray data of co-crystal structures. -
Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results. -
Stability of Zopiclone in Whole Blood Studies from a Forensic Perspective
Linköping Studies in Health Sciences, Thesis No. 113 Stability of zopiclone in whole blood ‐ Studies from a forensic perspective Gunnel Nilsson Division of Drug Research Department of Medical and Health Sciences Linköping University, Sweden Linköping 2010 Supervisors Robert Kronstrand, Associate Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Johan Ahlner, Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Fredrik C. Kugelberg, Associate Professor Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Sweden Gunnel Nilsson, 2010 Published article has been reprinted with permission of the copyright holder. Paper I © 2010 Elsevier, Forensic Science International Printed in Sweden by LiU‐Tryck, Linköping, Sweden, 2010 ISBN 978‐91‐7393‐339‐1 ISSN 1100‐6013 Dala‐Gård Ring the bells that still can ring Forget your perfect offering There is a crack in everything That’s how the light gets in Anthem by Leonard Cohen Contents CONTENTS ABSTRACT ............................................................................................................................. 1 POPULÄRVETENSKAPLIG SAMMANFATTNING..................................................... 3 LIST OF PAPERS ................................................................................................................... 5 ABBREVIATIONS ................................................................................................................ -
Pharmacology Part 2: Introduction to Pharmacokinetics
J of Nuclear Medicine Technology, first published online May 3, 2018 as doi:10.2967/jnmt.117.199638 PHARMACOLOGY PART 2: INTRODUCTION TO PHARMACOKINETICS. Geoffrey M Currie Faculty of Science, Charles Sturt University, Wagga Wagga, Australia. Regis University, Boston, USA. Correspondence: Geoff Currie Faculty of Science Locked Bag 588 Charles Sturt University Wagga Wagga 2678 Australia Telephone: 02 69332822 Facsimile: 02 69332588 Email: [email protected] Foot line: Introduction to Pharmacokinetics 1 Abstract Pharmacology principles provide key understanding that underpins the clinical and research roles of nuclear medicine practitioners. This article is the second in a series of articles that aims to enhance the understanding of pharmacological principles relevant to nuclear medicine. This article will build on the introductory concepts, terminology and principles of pharmacodynamics explored in the first article in the series. Specifically, this article will focus on the basic principles associated with pharmacokinetics. Article 3 will outline pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in general nuclear medicine, the fourth pharmacology relevant to pharmaceutical interventions and adjunctive medications employed in nuclear cardiology, the fifth the pharmacology related to contrast media associated with computed tomography (CT) and magnetic resonance imaging (MRI), and the final article will address drugs in the emergency trolley. 2 Introduction As previously outlined (1), pharmacology is the scientific study of the action and effects of drugs on living systems and the interaction of drugs with living systems (1-7). For general purposes, pharmacology is divided into pharmacodynamics and pharmacokinetics (Figure 1). The principle of pharmacokinetics is captured by philosophy of Paracelsus (medieval alchemist); “only the dose makes a thing not a poison” (1,8,9). -
Ontogeny of Plasma Proteins, Albumin and Binding of Diazepam, Cyclosporine, and Deltamethrin
nature publishing group Basic Science Investigation Articles Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin Pankaj K. Sethi1,2, Catherine A. White1, Brian S. Cummings1, Ronald N. Hines3–5, Srinivasa Muralidhara1 and James V. Bruckner1 BACKGROUND: To characterize the ontogeny of plasma for example, have been attributed to significant elevations albumin and total proteins, due to the lack of a comprehensive in serum concentrations of unbound parent compound and pediatric database. Secondly, to establish the magnitude and N-desmethyldiazepam, its major active metabolite (7). duration of maturational changes in binding of highly-bound There are number of factors that influence plasma binding of drugs/chemicals. drugs and other chemicals, some of which can be age-related. METHODS: Anonymized plasma samples from 296 donors These include the drug and its concentration, the presence of were pooled in 6 age brackets from birth to adolescence. Total binding competitors, the type and quantity of plasma protein, protein and albumin levels were measured in each age group, and the proteins’ affinity for the drug. Nau et al. (7) observed a as was the age-dependency of plasma binding of diazepam twofold increase in the free fraction of diazepam in the serum (DZP), cyclosporine (CYC), and deltamethrin (DLM), a pyre- of neonates that accompanied marked increases in free fatty throid insecticide. acids and bilirubin, competitors for albumin-binding sites. RESULTS: Plasma levels of albumin and total proteins steadily Albumin levels progressively rose during a 6-d postgestation increased for the first 1–3 y of life. Unbound DZP and CYC monitoring period, but remained significantly lower than in fractions were elevated three- to fourfold in neonates, but adults. -
Resistance to Cancer Chemotherapy
Alfarouk et al. Cancer Cell Int (2015) 15:71 DOI 10.1186/s12935-015-0221-1 REVIEW Open Access Resistance to cancer chemotherapy: failure in drug response from ADME to P‑gp Khalid O Alfarouk1*, Christian‑Martin Stock2, Sophie Taylor3, Megan Walsh3, Abdel Khalig Muddathir4, Daniel Verduzco5, Adil H H Bashir1, Osama Y Mohammed6, Gamal O Elhassan7,8, Salvador Harguindey9, Stephan J Reshkin10, Muntaser E Ibrahim1 and Cyril Rauch3 Abstract Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer. Keywords: Drug, Resistance, Pharmacokinetics, ADME, pH, MDR Background Macroscopic (systemic) resistance [host–related In US only, the newly diagnosed cancer patient is factors] 1,665,540 every year and the estimated death is 585,720 One of the major effects of host-related factors that [1] which are increasing as countries become more devel- determine the activity of the drug is pharmacokinetic. oped and more people reach advanced ages. Therefore, Pharmacokinetics is defined as the action of the body in many efforts are being done in the war against cancer [2]. -
PRAC Recommendations on Signals Adopted at the 31 Aug-3 Sep 2020
28 September 20201 EMA/PRAC/458924/2020 Pharmacovigilance Risk Assessment Committee (PRAC) PRAC recommendations on signals Adopted at the 31 August-3 September 2020 PRAC meeting This document provides an overview of the recommendations adopted by the Pharmacovigilance Risk Assessment Committee (PRAC) on the signals discussed during the meeting of 31 August-3 September 2020 (including the signal European Pharmacovigilance Issues Tracking Tool [EPITT]2 reference numbers). PRAC recommendations to provide supplementary information are directly actionable by the concerned marketing authorisation holders (MAHs). PRAC recommendations for regulatory action (e.g. amendment of the product information) are submitted to the Committee for Medicinal Products for Human Use (CHMP) for endorsement when the signal concerns Centrally Authorised Products (CAPs), and to the Co-ordination Group for Mutual Recognition and Decentralised Procedures – Human (CMDh) for information in the case of Nationally Authorised Products (NAPs). Thereafter, MAHs are expected to take action according to the PRAC recommendations. When appropriate, the PRAC may also recommend the conduct of additional analyses by the Agency or Member States. MAHs are reminded that in line with Article 16(3) of Regulation No (EU) 726/2004 and Article 23(3) of Directive 2001/83/EC, they shall ensure that their product information is kept up to date with the current scientific knowledge including the conclusions of the assessment and recommendations published on the European Medicines Agency (EMA) website (currently acting as the EU medicines webportal). For CAPs, at the time of publication, PRAC recommendations for update of product information have been agreed by the CHMP at their plenary meeting (14-17 September 2020) and corresponding variations will be assessed by the CHMP. -
The Grohe Method and Quinolone Antibiotics
The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV. -
Stereoselective, Competitive, and Nonlinear Plasma Protein Binding of Ibuprofen Enantiomers As Determined in Vivo in Healthy Subjects
Journal of Pharmacokinetics and Biopharmaceutics, Vol. 21, No. 2, 1993 Stereoselective, Competitive, and Nonlinear Plasma Protein Binding of Ibuprofen Enantiomers as Determined in Vivo in Healthy Subjects Jyoti K. Paliwal, 1.2 David E. Smith, 1, 2, s Steven R. Cox, 3 Rosemary R. Berardi, l Valerie A. Dunn-Kucharski, 1 and Grace H. Elta 4 Received February 12, 1993--Final April 28, 1993 The plasma protein binding and competitive inhibition parameters of R(- )- and S( + )-ibuprofen were determined in vivo in 12 healthy subjects. Subjects participated in a 4x4 Latin square design in which oral solutions of drug were administered as 300 mg R ( - )-ibuprofen, 300 mg S ( + )-ibuprofen, 300 mg R ( - )- + 300 mg S ( + )-ibuprofen, and 300 mg R ( - )- + 600 mg S ( + )-ibuprofen. Unlabeled ibuprofen enantiomers were quan- titated using a stereospecific reversed-phase HPLC assay, and plasma protein binding experiments were performed using radiolabeled 14C-enantiomers and an ultrafiltration method at 37C. At therapeutic drug concentrations, the protein binding of each enantiomer was greater than 99 %. Furthermore, the binding of ibuprofen enantiomers was stereoselective and mutually competitive, as well as nonlinear. The bound-free data were fitted to a model in which the non- linearity of plasma protein binding and competition between enantiomers for binding sites could be accommodated. There were substantial differences in the affinity of ibuprofen enantiomers for protein binding sites (RP2 = 0.358 +_ 0.185 vs. SP2 = 0.979 +_ 0.501 I~g/m# X +_ SD) but no differences in their binding capacity (RP ! = 160 ++86 vs. SP1 = 161 + 63 #g/ml). -
ESAC-Net Reporting Protocol 2019.Docx
TESSy - The European Surveillance System Antimicrobial consumption (AMC) reporting protocol 2019 European Surveillance of Antimicrobial Consumption Network (ESAC-Net) surveillance data for 2018 March 2019 Contents Introduction ............................................................................................................... 4 ESAC-Net ........................................................................................................................... 4 AMC metadata changes 2019 ............................................................................................... 5 Summary of the TESSy AMC data upload and validation process ........................................... 5 Annual ESAC-Net data collection .......................................................................................... 6 Overview of AMC data collection and analysis ....................................................................... 6 How to use this document .................................................................................................... 8 Finding further information .................................................................................................... 8 Reporting to TESSy ................................................................................................... 9 Data collection schedule ....................................................................................................... 9 Preparing data .................................................................................................................... -
Effect of Protein Binding on PK/PD
Effect of protein binding on PK/PD Clinical pharmacology weekly meeting 24 Feb. 2015 Sean Oosterholt Protein Binding • At therapeutic concentrations in plasma, many drugs exist mainly in bound form. • The most important plasma protein in relation to drug binding is albumin. Albumin binds many acidic drugs and a smaller number of basic drugs – Other plasma proteins include ß-globulin, a-acid glycoprotein and Lipoproteins Function of Protein Binding proteins • Serum albumins are important in regulating blood volume by maintaining the osmotic pressure of the blood compartment – They also serve as carriers for molecules of low water solubility this way isolating their hydrophobic nature. • ß-globulins are a subgroup of globulin proteins produced by the liver or immune system – Mostly involved with transport. • α-acid glycoprotein is an alpha-globulin and act as a carrier of basic and neutrally charged lipophilic compounds • The amount of a drug that is bound to protein depends on three factors: – the concentration of the drug – its affinity for the binding sites – the concentration of protein. • As an approximation, the binding reaction can be regarded as a simple association of the drug molecules with a finite population of binding sites, analogous to drug–receptor binding: 퐷 + 푆 ⇌ 퐷푆 free Binding complex drug site • The usual concentration of albumin in plasma is about 0.6 mmol/l (4 g/100 mL). With two sites per albumin molecule, the drug-binding capacity of plasma albumin would therefore be about 1.2 mmol/L. – For most drugs, the total plasma concentration required for a clinical effect is much less than 1.2 mmol/l, so with usual therapeutic doses the binding sites are far from saturated, and the concentration bound [DS] varies nearly in direct proportion to the free concentration [D]. -
Pharmacology-2/ Dr
1 Pharmacology-2/ Dr. Y. Abusamra Pharmacology-2 Quinolones, trimethoprim & sulfonamides Dr. Yousef Abdel - Kareem Abusamra Faculty of Pharmacy Philadelphia University 2 3 LEARNING OUTCOMES After completing studying this chapter, the student should be able to: Classify the drugs into subgroups such as quinolones and sulfonamides. Recognize the bacterial spectrum of all these antibiotic and antibacterial groups. Summarize the most remarkable pharmacokinetic features of these drugs. Numerate the most important side effects associated with these agents. Select the antibiotic of choice to be used in certain infections, as associated with the patient status including comorbidity, the species of bacteria causing the infection and concurrently prescribed drugs. Reason some remarkable clinical considerations related to the use or contraindication or precaution of a certain drug. Illustrate the mechanism of action of each of these drugs. • Following synthesis of na lidixic a c id in the early 1960s, continued modification of the quinolone nucleus expanded the spectrum of activity, improved pharmacokinetics, and stabilized compounds against common mechanisms of resistance. • Overuse resulted in rising rates of resistance in gram-negative and gram-positive organisms, increased frequency of Clostridium difficile infections, and identification of numerous tough adverse effects. • Consequently, these agents have been relegated to second-line options for various indications. 4 Pharmacology-2/ Dr. Y. Abusamra Only will be mentioned here 5 Pharmacology-2/ Dr. Y. Abusamra Most bacterial species maintain two distinct type II topoisomerases that assist with deoxyribonucleic acid Topoisomerases: Supercoiling Unwinding (DNA) replication: . DNA gyrase {supercoiling} and . Topoisomerase IV {Unwinding}. Following cell wall entry through porin channels, fluoroquinolones bind to these enzymes and interfere with DNA ligation.