Right-Handed Penises of the Earwig Labidura Riparia (Insecta, Dermaptera, Labiduridae): Evolutionary Relationships Between Structural and Behavioral Asymmetries

Total Page:16

File Type:pdf, Size:1020Kb

Right-Handed Penises of the Earwig Labidura Riparia (Insecta, Dermaptera, Labiduridae): Evolutionary Relationships Between Structural and Behavioral Asymmetries JOURNAL OF MORPHOLOGY 267:1381–1389 (2006) Right-Handed Penises of the Earwig Labidura riparia (Insecta, Dermaptera, Labiduridae): Evolutionary Relationships Between Structural and Behavioral Asymmetries Y. Kamimura1,2* 1Department of Environmental Systems, Rissho University, Kumagaya, Saitama 360-0194, Japan 2Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan ABSTRACT The number of penises vary in the insect umes of reports have detailed the development, suborder Forficulina (order Dermaptera; earwigs). Males genetics, evolution, and physiological backgrounds of the families Diplatyidae, Pigidicranidae, Anisolabididae, of behavioral asymmetries in vertebrates, especially Apachyidae, and Labiduridae have two penises (right and right-handedness in humans (e.g., Ludwig, 1970; left), while those of the Spongipohridae, Chelisochidae, Neville, 1976; Rogers and Andrew, 2002; and referen- and Forficulidae have a single penis. The proposed phylo- genetic relationships among these families suggest that ces therein), studies of invertebrates are rare. This is the single-penis families evolved from an ancestor possess- especially true for cases in which behavioral asym- ing two penises. To date, examinations of double-penis ear- metries are not associated with morphological differ- wig species have found that only a single penis is used per entiation of the left and right organs, the so-called single copulation. These diversities in structural and be- structural asymmetry (Byrne et al., 2002, 2004). havioral aspects of genitalia raises the following intriguing Palmer (1996) classified conspicuous asymmetry questions: How are the two penises used? Why did a penis in animals into two major categories: directional degenerate in several earwig families, and which one was asymmetry (DA) and antisymmetry (AS). In the for- lost? To address these questions, structural and behavioral mer case, most individuals of a population are behav- asymmetries were examined in detail for a representative iorally or structurally asymmetrical toward one side species Labidura riparia (Labiduridae). Although there was no detectable morphological differentiation between (either right-handed or left-handed). In populations the right and left penises, male L. riparia predominantly with AS, ‘‘right-handed’’ and ‘‘left-handed’’ individu- used the right one for insemination. This significant als are equally frequent. Based on phylogenetic anal- ‘‘right-handedness’’ developed without any experience of ysis of asymmetry variation among animals, Palmer mating and was also manifested in the resting postures of (1996) pointed out the evolutionary trend by which the two penises when not engaged in copulation. However, AS tends to precede DA in the asymmetrical traits surgical ablation of the right penis did not influence the in- expressed in postlarval phases. For example, phylo- semination capacity of males. In wild-caught males, only genetic patterns of flatfishes suggest that DA has about 10% were left-handed; within this group, abnormal- evolved multiple times from an AS ancestor, which ities were frequently observed in the right penis. These was characterized by polymorphism in the direction lines of evidence indicate that the left penis is merely a spare intromittent organ, which most L. riparia males are of ocular migration (Policansky, 1982; Chapleau, likely never to use. Additional observations of five species 1993). In populations exhibiting AS, the handedness of single-penis families revealed that the left penis degen- of each individual can be determined by environmen- erated in the common ancestor of this group. Considering tal factors rather than genetic factors. Peculiarly, no the proposed sister relationship between the Labiduridae significant response to a particular direction has and the single-penis families, it is possible that such be- been reported for artificial selection of traits show- havioral asymmetries in penis’ use, as observed in L. riparia, ing AS. This finding indicates the significance of are parental to the evolutionary degeneration of the in- frequently used left penis. J. Morphol. 267:1381–1389, Contract grant sponsor: Japan Ministry of Education, Culture, 2006. Ó 2006 Wiley-Liss, Inc. Sports, Science, and Technology; Contract grant number: 16770017. KEY WORDS: earwigs; evolution of genitalia; structural *Correspondence to: Yoshitaka Kamimura, Laboratory of Animal asymmetry; behavioral asymmetry; penis number; ejacu- Ecology, Department of Ecology and Systematics, Graduate School latory ducts; genital damage of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sap- poro 060-8589, Japan. E-mail: [email protected] Behavioral asymmetry, i.e., the biased use of later- Published online 18 October 2006 in ally paired organs, is a fascinating problem in evolu- Wiley InterScience (www.interscience.wiley.com) tionary and developmental biology. Although vol- DOI: 10.1002/jmor.10484 Ó 2006 WILEY-LISS, INC. 1382 Y. KAMIMURA epigenetic factors in controlling handedness in AS organ (Fig. 1A). Membranous penis lobes surround traits. In contrast, the expression of handedness in each virga (Fig. 1). In this article, a penis lobe and DA traits is likely to be genetically determined. the virga wrapped in it are collectively referred to as Therefore, the evolutionary transition AS ? DA a penis. In Diplatyidae and two subfamilies of Pygi- would be accompanied by a genetic assimilation pro- dicranidae (Pyragrinae and Esphalmeninae) two or cess, i.e., the replacement of an external environmen- bifurcated virgae are present in each of two penis tal trigger of handedness determination by a genetic lobes, resulting in four gonopores per males, while a trigger (Palmer, 1996). Although Palmer’s (1996) single virga with a gonopore per each penis lobe is arguments are focused on structural asymmetries, present in the remaining earwigs (e.g., Popham, behavioral traits are also likely to show the same 1965a). Sperm produced in paired testes and stored trend of AS preceding DA. In relation to the interplay in a seminal vesicle are transferred via a virga di- between behavioral and structural laterality, this rectly into a female sperm storage organ (sperma- possible trend is fascinating because an AS ? DA theca) during mating (Popham, 1965a; Kamimura, transition in behavior would promote the evolution of 2000, 2004a; Fig. 1A). To establish genital contact, DA in the morphology from the ancestral state of lat- males twist their abdomen in a clockwise (CW; eral symmetry. For example, consider laterally viewed from the head of the male) or in the counter- paired organs such as the right and left hand. When clockwise (CCW) direction (Fig. 1A). To date, only a one hand is rarely used for some reason (i.e., the de- handful of species of Diplatyidae and Anisolabididae velopment of behavioral asymmetry) that infre- have been examined in regard to the use patterns of quently used organ may degenerate and so a struc- their two penises. In the Diplatyidae and Pygidicra- tural asymmetry is established. Such a scenario of nidae (so-called ‘‘basal Dermaptera’’) both the right interplay between behavioral and structural asym- and left penises point toward the anterior of the metries is characterized by usage bias of paired body when not in copulation (Fig. 1A for the defini- organs preceding morphological differentiation. To tion of the left-right and anterior-posterior axes). my knowledge, no empirical examples of such transi- Hereafter, the term ‘‘resting state’’ is used to address tional states have been reported. such conditions of the penises when not in copula- tion. In a previous study, I found that male Diplatys flavicollis (Diplatyidae) used either the right (n ¼ 3) Earwig Genitalia as a Model Case or left (n ¼ 6) penis for insemination (Kamimura, Male genital organs and their use patterns in ear- 2004a). Although the sample size of that study was wigs (Insecta: Dermaptera) provide a rare opportu- small, this species can be characterized by its sym- nity to analyze the evolutionary relationship between metrical morphology and possible AS in penis-use behavioral and structural asymmetries. The Dermap- behavior. In the Apachyidae, Anisolabisidae, and tera is usually divided into three suborders: Hemi- Labiduridae the left and right penises point in oppo- merina, Arixeniina, and Forficulina. Members of the site directions when resting (Popham, 1965a; Fig. former two suborders live on mammals and show 1B,C). Because a penis should point straight posteri- special modifications adapted to phoretic habits orly during mating (Fig. 1A), organs pointing poste- (Nakata and Maa, 1974). According to the system of riorly while resting can be considered ready for mat- Sakai (1982), the Forficulina consist of eight families ing (R-ready, Fig. 1B or L-ready, Fig. 1C). For the of free-living typical earwigs: Pygidicranidae (in- Anisolabididae, no significant bias has been re- cluding Karschellidae (Popham, 1965b) as Karscheli- ported for the resting state of Euborellia plebeja (n nae), Diplatyidae (¼ Diplatyinae of Pygidicranidae ¼ 29; Kamimura and Matsuo, 2001), Anisolabis (Steinmann, 1989)), Anisolabididae (¼ Carcinophori- maritima (n ¼ 242; Kamimura and Matsuo, 2001), dae (Popham, 1965b; Steinmann, 1989)), Apachyidae, and A. littorea (n ¼ 32; Giles, 1961). In E. plebeja, Labiduridae, Spongiphoridae (¼ Labiidae (Popham, the actual use pattern of the penises was only 1965b; Steinmann, 1989)), Chelisochidae,
Recommended publications
  • Insecta: Dermaptera) with a Check·List of Genera and Species
    Rec. zool. Surv. India: 97 (Part-I) : 73-100, 1999 ON THE HIGHER CLASSIFICATION OF ANISOLABIDIDAE (INSECTA: DERMAPTERA) WITH A CHECK·LIST OF GENERA AND SPECIES G. K. SRIVASTAVA* Eastern Regional Station, Zoological Survey of Illdia, ShilJollg INTRODUCTION ~akai (1982) pointed out that family name Anisolabi( di)dae Verhoeff, 1902 has priority 6Verl~arcinophoridae Popham, 1965. Similarly the sub family Anisohibi(di)nae Zacher, 1911 baspriority overCarcinophorinae Hincks, 1954. Accordingly the former are used in the present work. A key for the discrimination of various subfamilies is given. The distinctive characters are based on various morphological character, mainly, on the body shape, shape of thoracic tergites, sternites and the male genitalia. It is proposed to erect a new subfamily Placolabidinae for the reception of Plac.:olabis Bey­ Bienko, 1959 as its type genus. This genus is very distinct from all t.he known genera of Anisolabidinae in having the median posterior prolongation of 8th sternite in males. Is·olaboidinae has been placed under this family by Srivastava (1996) which was transferred under Spongiphoridae (=Labidae) by Steinmann (1990). An attempt is made here to streamline the taxonomic status of various g~nera of AnisQlabidinae by providing akeyfortheirseparation. The main criteria fortheirdiscrilninatioll is based on the relative length of parameres besides its overall shape. The definition of various genera hOas been enlarged. The genera based on the shape of distal iobes and its associated stnlctures such as chiti nons accessory plates, shape and size of virga and the arrangement of teeth on chitinous pad may not prove t~ be stable characters since these vary intraspecifically.
    [Show full text]
  • Taxonomy of Iberian Anisolabididae (Dermaptera)
    Acta Zoologica Academiae Scientiarum Hungaricae 63(1), pp. 29–43, 2017 DOI: 10.17109/AZH.63.1.29.2017 TAXONOMY OF IBERIAN ANISOLABIDIDAE (DERMAPTERA) Mario García-París Museo Nacional de Ciencias Naturales, MNCN-CSIC c/José Gutiérrez Abascal, 2, 28006, Madrid. Spain. E-mail: [email protected] An update on the taxonomy and geographic distribution of Iberian Anisolabididae (Der- maptera) is provided. Former catalogues reported in the Iberian Peninsula three genera of Anisolabididae: Aborolabis, Anisolabis, and Euborellia. A revision of 487 specimens of Iberian and North African Anisolabidoidea permit to exclude the genus Aborolabis from the Iberian fauna, the re-assignation of inland Euborellia annulipes Iberian records to Euborellia moesta, and the exclusion of Aborolabis angulifera from Northwestern Africa. Examination of type materials of Aborolabis mordax and Aborolabis cerrobarjai allows to propose the treatment of A. cerrobarjai as a junior synonym of A. mordax. The diagnostic characters of Euborellia his- panica are included within the local variability found in E. moesta. I propose that E. hispanica should be treated as a junior synonym of E. moesta. Key words: earwigs, systematics, Mediterranean region, Spain, Morocco, NW Africa. INTRODUCTION The Iberian fauna of Dermaptera, including Anisolabididae Verhoeff, 1902, has been the subject of diverse revisionary (Bolívar 1876, 1897, Lapeira & Pascual 1980, Herrera Mesa 1980, Bivar de Sousa 1997) and compilatory works (Herrera Mesa 1999). These revisions together with the monograph of the Fauna of France (Albouy & Caussanel 1990) and the on-line information included in Fauna Europaea (Haas 2010), rendered the image of Dermaptera as a well known group in continental western Europe.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
    When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy.
    [Show full text]
  • Dermaptera: Diplatyidae), Probable Evidence of Contact Between Neotropical and Malagasy Faunas
    Zootaxa 3794 (4): 593–599 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.4.11 http://zoobank.org/urn:lsid:zoobank.org:pub:EFFE09E5-3F9B-4A58-A56A-97E962323981 Mesodiplatys venado sp. nov. (Dermaptera: Diplatyidae), probable evidence of contact between Neotropical and Malagasy faunas LEONID N. ANISYUTKIN Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia. E-mail: [email protected], [email protected] Abstract A new earwig of the Malagasy genus Mesodiplatys stat. nov., M. venado sp. nov. (Dermaptera: Diplatyidae) is described from Peru (Departament Junin, Satipo Province). The diagnosis and composition of the genus Mesodiplatys stat. nov. are discussed. A detailed morphological description of the new species is given. The possible biogeographical significance of the find as evidence of link between South American and Malagasy fauna is briefly considered. Key words: earwigs, historical biogeography, morphology, Madagascar, Peru, South America Introduction The family Diplatyidae Verhoeff is a well-defined group of earwigs (Dermaptera). It is readily recognizable by the following character combination: head with large eyes, presence of well developed post-ocular carinae and a cylindrical abdomen, which is apically widened in males of most taxa (Hincks 1955; Sakai 1982, 1985). Diplatyidae is one of the early derivative groups of earwigs (Haas 1995; Haas & Klass 2003; Engel & Haas 2007) known at least from the Early Cretaceous (Engel 2011). The phylogenetic position of this family is rather obscure because links among the most archaic families of earwigs (Karschiellidae, Diplatyidae and Pygidicranidae) are unclear and inclusion of these families in Protodermaptera Zacher is based on symplesiomorphies (Grimaldi & Engel 2005).
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Striped Earwig
    Beneficial Species Profile Photo credit: Joseph Berger, Bugwood.org Common Name: Striped Earwig Scientific Name: Labidura riparia Order and Family: Dermaptera: Labiduridae Size and Appearance: A small, mostly soft-bodied insect that appears pale brown in color with two lengthwise stripes on the pronotum, which is the protective outer plate covering the insect’s thorax. Front wings appear to be shortened and disguise much longer hind wings folded up beneath. Large pincher-like cerci, which are paired appendages at the end of the abdomen. Male cerci are widely separated at the base, slightly curved, and symmetrical. Antenna have 14-24 segments; 4th, 5th & 6th antennae segments combined are shorter than the 1st segment. 2nd tarsal segment is cylindrical, not lobed. Length (mm) Appearance Egg ~ 1mm but can swell to over Pearly grayish-white; laid in clustered double the size while uptaking masses water during development Larva/Nymph Strongly resemble the adult without 2mm- 18mm developed wings; whitish appearance when first born; 4 instars Adult Pale brown in color; front wings appear to be shortened and disguise much 18-26mm longer hind wings folded up beneath; Large pincher-like cerci on abdomen; antennae have 14-24 segments; 4th, 5th & 6th antennae segments combined are shorter than the 1st segment. 2nd tarsal segment is cylindrical, not lobed. Pupa (if applicable) Incomplete Metamorphosis (no pupae) n/a Type of feeder (Chewing, sucking, etc.): Chewing mouthparts on adult and immature. Host/s: Widespread and found on a variety of hosts in all life cycles including, but not limited to, ground litter, beaches, river banks, and irrigation fields.
    [Show full text]
  • André Nel Sixtieth Anniversary Festschrift
    Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years.
    [Show full text]
  • Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae.
    [Show full text]
  • A Synergism Between Dimethyl Trisulfide and Methyl Thiolacetate
    University of Connecticut OpenCommons@UConn Department of Ecology and Evolutionary EEB Articles Biology 2020 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented Minimal Trap Stephen T. Trumbo University of Connecticut at Waterbury, [email protected] John Dicapua III University of Connecticut at Waterbury, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Behavior and Ethology Commons, and the Entomology Commons Recommended Citation Trumbo, Stephen T. and Dicapua, John III, "A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically- Supplemented Minimal Trap" (2020). EEB Articles. 46. https://opencommons.uconn.edu/eeb_articles/46 1 1 2 A Synergism Between Dimethyl Trisulfide And Methyl Thiolacetate In Attracting 3 Carrion-Frequenting Beetles Demonstrated By Use Of A Chemically-Supplemented 4 Minimal Trap 5 6 Stephen T. Trumbo* and John A. Dicapua III 7 8 University of Connecticut, Department of Ecology and Evolutionary Biology, 9 Waterbury, Connecticut, USA 10 11 *Department of Ecology and Evolutionary Biology, University of Connecticut, 99 E. 12 Main St., Waterbury, CT 06710, U.S.A. ([email protected]) 13 ORCID - 0000-0002-4455-4211 14 15 Acknowledgements 16 We thank Alfred Newton (staphylinids), Armin MocZek and Anna Macagno (scarabs) 17 for their assistance with insect identification. Sandra Steiger kindly reviewed the 18 manuscript. The Southern Connecticut Regional Water Authority and the Flanders 19 Preserve granted permission for field experiments. The research was supported by 20 the University of Connecticut Research Foundation.
    [Show full text]
  • (Insecta: Dermaptera) with a Check-List of Genera and Species
    Rec. zool. Surv. India: 97 (Part-I) : 73-100, 1999 ON THE HIGHER CLASSIFICATION OF ANISOLABIDIDAE (INSECTA: DERMAPTERA) WITH A CHECK·LIST OF GENERA AND SPECIES G. K. SRIVASTAVA* Eastern Regional Station, Zoological Survey of Illdia, ShilJollg INTRODUCTION ~akai (1982) pointed out that family name Anisolabi( di)dae Verhoeff, 1902 has priority 6Verl~arcinophoridae Popham, 1965. Similarly the sub family Anisohibi(di)nae Zacher, 1911 baspriority overCarcinophorinae Hincks, 1954. Accordingly the former are used in the present work. A key for the discrimination of various subfamilies is given. The distinctive characters are based on various morphological character, mainly, on the body shape, shape of thoracic tergites, sternites and the male genitalia. It is proposed to erect a new subfamily Placolabidinae for the reception of Plac.:olabis Bey­ Bienko, 1959 as its type genus. This genus is very distinct from all t.he known genera of Anisolabidinae in having the median posterior prolongation of 8th sternite in males. Is·olaboidinae has been placed under this family by Srivastava (1996) which was transferred under Spongiphoridae (=Labidae) by Steinmann (1990). An attempt is made here to streamline the taxonomic status of various g~nera of AnisQlabidinae by providing akeyfortheirseparation. The main criteria fortheirdiscrilninatioll is based on the relative length of parameres besides its overall shape. The definition of various genera hOas been enlarged. The genera based on the shape of distal iobes and its associated stnlctures such as chiti nons accessory plates, shape and size of virga and the arrangement of teeth on chitinous pad may not prove t~ be stable characters since these vary intraspecifically.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]