A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad

Total Page:16

File Type:pdf, Size:1020Kb

A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad To cite this version: Raluca Vlad. A Method for the Assessment of the Quality of Stereoscopic 3D Images. Signal and Image Processing. Université de Grenoble, 2013. English. tel-00925280v1 HAL Id: tel-00925280 https://tel.archives-ouvertes.fr/tel-00925280v1 Submitted on 7 Jan 2014 (v1), last revised 28 Feb 2014 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Signal, Image, Parole, Télécommunications (SIPT) Arrêté ministériel : 7 août 2006 Présentée par Mlle Raluca VLAD Thèse dirigée par Mme Anne GUÉRIN-DUGUÉ et Mme Patricia LADRET préparée au sein du laboratoire Grenoble - Images, Parole, Signal, Automatique (GIPSA-lab) dans l’école doctorale d’Électronique, Électrotechnique, Automatique et Traitement du signal (EEATS) Une méthode pour l’évaluation de la qualité des images 3D stéréoscopiques Thèse soutenue publiquement le 2 décembre 2013, devant le jury composé de : Patrick LE CALLET Professeur, Université de Nantes, Rapporteur Frederic DUFAUX Directeur de recherche, CNRS, Telecom Paris Tech, Rapporteur Pascal MAMASSIAN Directeur de recherche, CNRS, Université Paris Descartes, Examinateur, Président du jury Ingrid HEYNDERICKX Professeur, Technical University of Delft, Examinateur Alain BELLON Ingénieur, STMicroelectronics Grenoble, Examinateur Anne GUÉRIN-DUGUÉ Professeur, Université Joseph Fourier Grenoble, Directeur de thèse Patricia LADRET Maître de conférences, Université Joseph Fourier Grenoble, Encadrant de thèse UNIVERSITY OF GRENOBLE Doctoral school EEATS (Électronique, Électrotechnique, Automatique et Traitement du Signal) THESIS for obtaining the title of Doctor of Science of the University of Grenoble Mention: SIPT (Signal, Image, Parole, Télécommunications) Presented by Ms Raluca VLAD A Method for the Assessment of the Quality of Stereoscopic 3D Images Thesis supervised by Mrs Anne GUÉRIN-DUGUÉ and Mrs Patricia LADRET prepared at Grenoble - Images, Parole, Signal, Automatique Laboratory (GIPSA-lab) presented on December 2, 2013 Jury: Reviewers: Patrick LE CALLET - University of Nantes Frederic DUFAUX - CNRS, Telecom Paris Tech Examiners: Pascal MAMASSIAN - CNRS, Paris Descartes University Ingrid HEYNDERICKX - Technical University of Delft Alain BELLON - STMicroelectronics Grenoble Supervisor: Anne GUÉRIN-DUGUÉ - University Joseph Fourier of Grenoble Co-supervisor: Patricia LADRET - University Joseph Fourier of Grenoble Acknowledgments The three years of my PhD studies have finished (it seems now, so fast) and the most important trace they leave with me is one of extreme human richness, coming from the wonderful persons I have been surrounded by. I am so lucky! I am happy to address now my sincere thanks to Patricia and Anne, an excellent team of PhD supervisors, given their technicality, their precision, their high standards, but most of all, their admirable human qualities and their right words at the right time that have given me the confidence to overcome any challenge. I respectfully thank my PhD committee members (Patrick Le Callet, Frédéric Dufaux, Ingrid Heynderickx, Pascal Mamassian, and Alain Bellon), for their kind appreciations of my work. I particularly thank Alain Bellon of STMicroelectronics for his cordial support, for his very pertinent and detailed observations on my work and for the clear insight he allowed me to gain on the industrial side of my field of work. I must thank Gelu Ionescu and Laurent Ott for their prompt technical help, but also for the cordial discussions that I have often had with each of them. I thank Lucia Bouffard-Tocat and Isabelle Cieren for their precious help in administrative matters. They have made everything so much simpler for me. I would like to thank Jérôme Mars, him being my first contact with GIPSA-lab and the one who believed in me when, back in Romania, I told him once how I would love to work in research related to image processing in France. I owe many, many thanks to Simone and Fakhri. The numerous discussions with them on the subject of my PhD in our office have been so rich and have brought me so many good ideas. I sincerely thank Olha and Matthieu for their contributions to the results presented in this manuscript. They have been both honestly involved in the experimental studies that we carried out together. Olha was very patient and calm when I was not anymore and Matthieu did an excellent job providing proper results in a very efficient way during my third year of PhD, allowing me thus to finish this manuscript correctly on time. A I must thank Damien for his proper and very elegantly organized LTEX template that he A allowed me to use, for all the LTEX discussions (and jokes) he so often has to share, but also for the sincere and thorough help he has offered whenever I needed. I have huge thanks to offer to my colleagues from the DIS department of GIPSA-lab: Arnaud, Aude, Céline, Christophe, Cindy, Emmanuelle, Francesca, Florian, Hao, Hélène, Quentin, Ladan, Jérémie, Jonas, Manu, Rémy, Robin, Rodrigo, Saman, Son, Vincent, Weiyuan (alphabetical order, impossible to do otherwise) and not only. They were all so supportive, so helpful, so kind, so sincere, that I consider them more than colleagues, I consider them my friends. I am so glad to have had the chance to work in such a pleasant environment. I reserve particular thanks to Guanghan and Zhongyang, who have been my special com- i ii panions at GIPSA-lab since the beginning of my PhD and such devoted friends. I have shared with them so many great experiences. I do not forget my friends from Romania either: Andra, Bobi, Cristina, Ioana, Monica. Even if we meet rarely and we sometimes do not get to speak even for months, whenever we do, it feels like we were never apart. I had their warm support when I decided to take the big step of coming to France and great encouragements in all the other steps that followed ever since. I can always count on them and I spend such pleasant moments in their company. Cécile... Her friendship means so much to me. She is the first friend I made in France and definitely the most precious. I have learned so much from her, but most importantly I have learned that no effort is too big when you are doing it for a friend. Cécile, thank you! Vincent... The proud smile on his face when I finished my PhD defense presentation, that was the beautiful final note of all the last months of emotion and hard work, during which he supported me like I did not know it was possible. Long discussions on so many subjects, insight from his experience, confidence, encouragement, sometimes tough (but justified and so helpful) A remarks, typical (and cute) jokes, LTEXor French orthography counseling at any hour, night or day, and so many other huge or very small things are some of the strongest reasons why I declare myself so lucky. Thank you, Vincent! And, last, but most important, I would like to warmly thank my family: parents, grand- parents, cousins, uncles and aunts. I am so thankful to have such a beautiful and loving family. They have supported me enormously in every step I took and what I am is because of them. Thank you all ! Contents Acknowledgments i Introduction 3 I State-of-the-Art 7 1 The Evolution of Stereoscopy 9 1.1 Short history of stereoscopy .............................. 9 1.2 Stereoscopy today ................................... 13 2 The Human Stereoscopic Perception 15 2.1 The main HVS characteristics related to the binocular vision . 15 2.2 Mechanisms of human depth perception ....................... 25 3 The Stereoscopic Systems 31 3.1 Dual-camera geometry ................................. 31 3.2 Dual-camera capture .................................. 33 3.3 3D content compression ................................ 33 3.4 3D data formats .................................... 35 3.5 3D displays ....................................... 36 3.6 3D data rendering ................................... 43 4 The Assessment of the Stereoscopic Quality 49 4.1 Image quality ...................................... 50 4.2 Stereoscopic image quality ............................... 50 4.3 Assessing the stereoscopic image quality ....................... 51 4.4 The depth perceived .................................. 52 4.5 Impairments in the stereoscopic content ....................... 53 4.6 Visual fatigue and visual discomfort ......................... 63 4.7 Stereoscopic image quality assessment methods ................... 66 4.8 Stereoscopic image quality models .......................... 83 4.9 The Image Quality Circle of Engeldrum ....................... 85 iii iv Contents II Our Objectives and Our Approach 89 5 Our Objectives and Our Approach 91 5.1 Our objectives ..................................... 91 5.2 Our approach ...................................... 92 6 Our Stereoscopic System 99 6.1 Capture ......................................... 99 6.2 Image processing ....................................101 6.3 Displays .........................................102
Recommended publications
  • 3D Techniques
    3D Techniques Univ.Prof. Dr.-Ing. Markus Rupp LVA 389.141 Fachvertiefung Telekommunikation (LVA: 389.137 Image and Video Compression) Last change: Jan 20, 2020 Outline • Binocluar Vision • Stereo Images: From first approaches to standardisation • 3D TV Univ.-Prof. Dr.-Ing. Markus Rupp 2 So far we did only this… This is an eye-pad not an IPad Binocular vision • Binocular vision is vision in which both eyes are used together. The word binocular comes from two Latin roots, bini for double, and oculus for eye.[1] Having two eyes confers at least four advantages over having one. First, it gives a creature a spare eye in case one is damaged. Second, it gives a wider field of view. For example, humans have a maximum horizontal field of view of approximately 200 degrees with two eyes, approximately 120 degrees of which makes up the binocular field of view (seen by both eyes) flanked by two uniocular fields (seen by only one eye) of approximately 40 degrees. [2] Third, it gives binocular summation in which the ability to detect faint objects is enhanced.[3] Fourth it can give stereopsis in which parallax provided by the two eyes' different positions on the head give precise depth perception.[4] Such binocular vision is usually accompanied by singleness of vision or binocular fusion, in which a single image is seen despite each eye's having its own image of any object.[4] Binocular vision • Some animals, usually prey animals, have their two eyes positioned on opposite sides of their heads to give the widest possible field of view.
    [Show full text]
  • Proximal Monitoring in Landscape Environments
    Department of Mathematics and Statistics Proximal Monitoring in Landscape Environments Shuqi Ng This dissertation is presented for the Degree of Doctor of Philosophy of Curtin University December 2017 DECLARATION To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Shuqi Ng March 2017 ABSTRACT With the implementation of the initiatives in reducing emissions from deforestation and forest degradation (REDD), the accurate determination of the spatio-temporal variation of carbon stocks is crucial. Woody vegetation is one of the more noteworthy carbon storage pools. However, ever-changing forest inventory makes it difficult for countries to accurately measure woody biomass and by extension, predict carbon stocks. Although the most accurate mensuration of biomass is to harvest a tree, the method is destructive and obstructs the REDD initiative. Non- destructive methods use dendrometric measurements that have been obtained from non-contact, remote sensing technologies to estimate biomass derived from allometric models. The commodity stereo-camera is an alternate consideration to remote sensing technologies currently used such as terrestrial laser scanning (TLS), which requires specialized equipment and some expertise in using the equipment. Improving technologies and software has enabled the photogrammetric measurements of objects to be reasonably accurate comparative to TLS. As a more mobile and cost-effective equipment, it also addresses some of the issues in using laser technology. In photogrammetric measurement, the application of spatial scale to the model is critical for accurate distance and volume estimates (Miller (2015)).
    [Show full text]
  • A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad
    A Method for the Assessment of the Quality of Stereoscopic 3D Images Raluca Vlad To cite this version: Raluca Vlad. A Method for the Assessment of the Quality of Stereoscopic 3D Images. Signal and Image Processing. Université de Grenoble, 2013. English. tel-00925280v2 HAL Id: tel-00925280 https://tel.archives-ouvertes.fr/tel-00925280v2 Submitted on 10 Jan 2014 (v2), last revised 28 Feb 2014 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Signal, Image, Parole, Télécommunications (SIPT) Arrêté ministériel : 7 août 2006 Présentée par Mlle Raluca VLAD Thèse dirigée par Mme Anne GUÉRIN-DUGUÉ et Mme Patricia LADRET préparée au sein du laboratoire Grenoble - Images, Parole, Signal, Automatique (GIPSA-lab) dans l’école doctorale d’Électronique, Électrotechnique, Automatique et Traitement du signal (EEATS) Une méthode pour l’évaluation de la qualité des images 3D stéréoscopiques Thèse soutenue publiquement le 2 décembre 2013, devant le jury composé de : Patrick LE CALLET
    [Show full text]
  • Stereo World Magazine and Enroli Me As a Bad Time to Invest Not in Just Rare Member of the National Stereoscopic Association
    3-0 Imaging Past & Present November/December 2008 Volume 34, Number 3 A taste of tho lato qos through tho oady '608 found in amatour storm slidas bg~uk~lll~c I were made. Thev are both mount- watching the adventures of the Space Gear for Christmas ed in the old st);le gray Kodak Robinson family in Lost in Space, t's not often that both images in heat-seal mounts with red edges. which I'm sure had numerous tie- this column are of the same sub- These two brothers apparently in products that made their way to ject, taken within moments of got up CMstmas morning and CMstmas wish lists, but that was I found space helmets (complete probably nearly a decade after each other, but this pair just seemed too good not to share with inflatable shoulder pads) and these guys became space explorers. them both! weapons waiting for them under The photographer must have These slides were found in an the tree. Since this was a bit before been using a rather slow exposure accumulation of images that my time, I don't know if these out- setting and moved the camera fits were offidal replicas based on when taking these photos, since appear to have been taken in the TV 1950s, although these particular some show or comic book flames from the fireplace can be ones contain no notes or informa- series, or if they were just generic seen through the one boy's pants, when space toys. Personally, I grew up and I'm sure he's not on fire! tion as to or where they Fortunately for the boys, these bubble-style helmets appear to have had large rectangular open- ings in front of their faces, which would not be so useful in space, but would have kept young explor- ers on earth supplied with enough oxygen to avoid problems.
    [Show full text]
  • Atelier 3D 20/04/2011
    Clubs IBM Photo + Video + Micro Atelier 3D 20/04/2011 ChristopheChristophe DentingerDentinger Sommaire de l’Atelier 3D Partie ‘théorique’ (40 minutes) Origines / Fondement de la 3D / Stéréoscopie / Histoire des techniques 3D Techniques et matériels prises de vue Photo et Vidéo 3D Techniques et matériels de Visualisation 3D / Logiciels Ateliers parallèles (3 x 20 minutes en 3 groupes) Salle Audiovisuelle: Démonstration de l’adaptateur réflex 3D Loreo, Démonstration du Fuji W3, Visualisation photos avec Loreo Pixi 3D Viewer Club Video: Démonstration GoPro, Réglage effet 3D sous Cineform studio, Exportation des vidéos et visualisation au format Anaglyphe rouge / cyan Club Micro: Visualisation avec lunettes actives NVIDIA de photos et vidéos prises avec le Fuji W3 et L’adaptateur Loreo 3D Utilisation de Myfinepix studio pour gérer les fichiers 3D MPO / AVI Utilisation de Stereo Photo Maker pour aligner et exporter les photos 3D Page 2 Origines / Fondements de la 3D Fondements: La 3D est liée principalement à l’un de nos 5 sens (la vision) et l’interaction avec l’espace qui nous entoure Espace et 3D ‘Naturelle’ L’espace est une notion qui correspond à la perception de notre environnement naturel physique par l’un de nos sens (vue). L’espace géométrique euclidien est une représentation mathématique qui modélise cet environnement (par exemple 2 dimensions pour le sol = 4 directions et la 3ième dimension pour la hauteur), l’axe vertical étant ‘causé’ par la gravité. La part de l’évolution dans la vision Adaptation des espèces animales: Par exemple les animaux chassés ont une vision panoramique alors que les prédateurs doivent percevoir les distances.
    [Show full text]
  • A Uav-Based Low-Cost Stereo Camera System for Archaeological Surveys - Experiences from Doliche (Turkey)
    International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 2013 UAV-g2013, 4 – 6 September 2013, Rostock, Germany A UAV-BASED LOW-COST STEREO CAMERA SYSTEM FOR ARCHAEOLOGICAL SURVEYS - EXPERIENCES FROM DOLICHE (TURKEY) K. Haubeck a, T. Prinz b a Institute of Geography, Westfalian Wilhelms-University Münster, Germany – [email protected] b Institute for Geoinformatics, Westfalian Wilhelms-University Münster, Germany – [email protected] KEY WORDS: Archaeology, Application, DEM/DTM, Orthoimage, Close Range, UAV, Stereoscopic ABSTRACT: The use of Unmanned Aerial Vehicles (UAVs) for surveying archaeological sites is becoming more and more common due to their advantages in rapidity of data acquisition, cost-efficiency and flexibility. One possible usage is the documentation and visualization of historic geo-structures and -objects using UAV-attached digital small frame cameras. These monoscopic cameras offer the possibility to obtain close-range aerial photographs, but – under the condition that an accurate nadir-waypoint flight is not possible due to choppy or windy weather conditions – at the same time implicate the problem that two single aerial images not always meet the required overlap to use them for 3D photogrammetric purposes. In this paper, we present an attempt to replace the monoscopic camera with a calibrated low-cost stereo camera that takes two pictures from a slightly different angle at the same time. Our results show that such a geometrically predefined stereo image pair can be used for photogrammetric purposes e.g. the creation of digital terrain models (DTMs) and orthophotos or the 3D extraction of single geo-objects.
    [Show full text]
  • The 3D New Wave and the Future Image ~ Trend of 3D Autostereoscopic Display and Its Future Image ~
    Fujiwara-Rothchild, Ltd. Trend of 3D autostereoscopic display and its future image July, 2010 Market Research Report published on July, 2010 The 3D new wave and the future image ~ Trend of 3D autostereoscopic display and Its future image ~ Fujiwara-Rothchild, Ltd. Y’s Bldg. 3F, 3-6-15 Kanda-Jimbocho, Chiyoda-ku, Tokyo 101-0051 JAPAN Phone : 03-3239-3008 FAX: 03-3239-8081 E-mail: [email protected] The 3D new wave and the future image Copyright 2010 Fujiwara-Rothchild, Ltd. All Rights Reserved. Y’s Bldg. 3F, 3-6-15 Kanda-Jimbocho, Chiyoda-ku, Tokyo 101-0051 JAPAN Phone:81-3-3239-3008 Fax:81-3-3239-8081 Email:[email protected] 1 Fujiwara-Rothchild, Ltd. Trend of 3D autostereoscopic display and its future image July, 2010 INDEX 1. Preface ........................................................................................................ 7 2. Exective Summary ..................................................................................... 9 3. 3D back groung ........................................................................................ 12 3.1. 3D History ........................................................................................................... 12 3.2. Trend of Film industry ........................................................................................ 13 3.2.1. Movie business ............................................................................................. 13 3.2.2. Active demand of recent Hollywood 3D movie ........................................... 15 3.2.3. 3D Movie bussiness .....................................................................................
    [Show full text]
  • Image and Video Compression Coding Theory Contents
    Image and Video Compression Coding Theory Contents 1 JPEG 1 1.1 The JPEG standard .......................................... 1 1.2 Typical usage ............................................. 1 1.3 JPEG compression ........................................... 2 1.3.1 Lossless editing ........................................ 2 1.4 JPEG files ............................................... 3 1.4.1 JPEG filename extensions ................................... 3 1.4.2 Color profile .......................................... 3 1.5 Syntax and structure .......................................... 3 1.6 JPEG codec example ......................................... 4 1.6.1 Encoding ........................................... 4 1.6.2 Compression ratio and artifacts ................................ 8 1.6.3 Decoding ........................................... 10 1.6.4 Required precision ...................................... 11 1.7 Effects of JPEG compression ..................................... 11 1.7.1 Sample photographs ...................................... 11 1.8 Lossless further compression ..................................... 11 1.9 Derived formats for stereoscopic 3D ................................. 12 1.9.1 JPEG Stereoscopic ...................................... 12 1.9.2 JPEG Multi-Picture Format .................................. 12 1.10 Patent issues .............................................. 12 1.11 Implementations ............................................ 13 1.12 See also ................................................ 13 1.13 References
    [Show full text]
  • Using Depth Information to Aid Stereoscopic Image Forensics
    USING DEPTH INFORMATION TO AID STEREOSCOPIC IMAGE FORENSICS BY MARK-ANTHONY FOUCHÉ Submitted in partial fulfilment of the requirements for the degree Master of Science (Computer Science) in the Faculty of Engineering, Build Environment and Information Technology UNIVERSITY OF PRETORIA September 2014 © University of Pretoria SUMMARY USING DEPTH INFORMATION TO AID STEREOSCOPIC IMAGE FORENSICS by Mark-Anthony Fouché Supervisor: Prof MS Olivier Department: Computer Science University: University of Pretoria Degree: Master of Science (Computer Science) Keywords: Stereoscopic Image, Stereo 3D, Image Forensics, Splicing, Depth, Disparity Map, Forgery Detection With the advances in image manipulation software, it has become easier to manipulate digital images. These manipulations can be used to increase image quality, but can also be used to depict a scene that never occurred. One of the purposes of digital image forensics is to identify such manipulations. There is however a lack of research on the detection of manipulated stereoscopic images. Stereoscopic images are images which create an illusion of depth for the viewer by showing an image pair that correlates to a person’s left and right eye. This dissertation investigates how depth information can be used to detect stereoscopic image manipulations. Two techniques were developed and tested through experimentation. The first technique used disparity maps to highlight large areas without internal depth. These areas can be the product of non-stereoscopic to stereoscopic splicing techniques. Experimentation results showed that areas without internal depth can be detected. However, the detected areas can be the product of natural occurrences in images and not only non-stereoscopic to stereoscopic splicing. Post investigation of detected areas is thus required to verify the results.
    [Show full text]
  • Various Methods of 3D Content Generation for Image Processing
    IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) Various Methods of 3D Content Generation for Image Processing B. GnanaPriya Department of Computer Science and Engineering, Annamalai University ABSTRACT - 3D is the buzz term used everywhere 3. WORKING OF 3D CAMERA nowadays. People intent to buy TV's , gaming gadgets ,Cameras, Smart phones which are capable of displaying 3D A 3D camera is an image capturing device that enables the information. 3D hardware is quiet popular and widely perception of depth in images to replicate three dimensions as available in market. 3D content development is essential for experienced through human binocular vision. 3D camera in capturing new data in 3D and also there is a need to convert current scenario are of two types. One with two lenses and 2D data available into 3D format for efficient display in 3D two image sensors are available for simultaneous exposure of hardware. 3D content is used widely in medicine, engineering, a stereo pair. The two lenses are set approximately the same distance apart as a pair of human eyes mimicking the sense of earth science, architecture, video games, movies, printing and many more fields. This paper explores various ways to create depth that we get when we view things with our own eyes. 3D content using hardware and Software available, 3D The twin lenses capture two images simultaneously similar to datasets available for study and 3D classification. how our right and left eye would see two different images and the 3D processor converts these two images into a single 3D image file.
    [Show full text]
  • INTRODUCTION I Have Early Letters Between W
    INTRODUCTION I have early letters between W. C. Darrah and Ray Bohman discussing the collecting of stereo views and their value in the early ‘70s. Personal correspondence between collectors at that time was the only way of sharing information prior to the establishment of NSA. On December 5, 1973, Richard Russack sent a questionnaire to approximately 250 stereo collectors to see if there was an interest in forming a “stereo collector’s organization.” Rick stated, “I believe that such a group could be helpful in at least two major areas. Firstly, the newsletter of the group could serve as a clearing house for information on particular views, subjects or photographers...Secondly, the group’s newsletter could also aid collectors in disposing unwanted items and also aid in adding items...Why not a “For Trade”...and certainly a “For Sale and Wanted” section...By this time you know what I have in mind.” Richard Russack.” On January 28, 1974, an invitation was issued to about 500 names of collectors interested in stereo by Richard Russack and John Waldsmith. It also defined the contents of a proposed newsletter to be called Stereo World. During the 1980’s there was a big influx of members who were taking 3-D photographs and the magazine became more balanced between the collectors and the shooters. Tex Treadwell edited the previous index (Volumes 1 through 23) and defined his guidelines for inclusion of entries. These guidelines were a basis for my work, but I decided to start over from Vol 1, Number 1, in order to give continuity to the complete work.
    [Show full text]
  • Manual Basic Photography and Playback
    BL01071-200 EN DIGITAL CAMERA Before You Begin FINEPIX REAL 3D W3 First Steps Owner’s Manual Basic Photography and Playback Thank you for your purchase of this prod- More on Photography uct. This manual describes how to use W3 your FUJIFILM FINEPIX REAL 3D digital More on Playback camera and the supplied software. Be sure that you have read and understood its con- Movies tents before using the camera. Connections Taking C Pictures Menus For best results, position yourself at the appropriate distance from your sub- ject (pg. 16) and be careful not to obstruct the lenses (pg. 17). Technical Notes For information on related products, visit our website at http://www.fujifilm.com/products/digital_cameras/index.html Troubleshooting Appendix For Your Safety IMPORTANT SAFETY INSTRUCTIONS • Read Instructions: All the safety and not defeat the safety purpose of the This video product should never be An appliance operating instructions should be polarized plug. placed near or over a radiator or heat and cart com- read before the appliance is oper- register. bination should Alternate Warnings: This video ated. be moved with product is equipped with a 3-wire Attachments: Do not use attachments • Retain Instructions: The safety and care. Quick stops, grounding-type plug, a plug having not recommended by the video operating instructions should be excessive force, a third (grounding) pin. This plug will product manufacturer as they may retained for future reference. and uneven sur- only fi t into a grounding-type power cause hazards. • Heed Warnings: All warnings on the faces may cause the appliance and outlet.
    [Show full text]