Charges on Graupel and Snow Crystals and the Electrical Structure of Winter Thunderstorms

Total Page:16

File Type:pdf, Size:1020Kb

Charges on Graupel and Snow Crystals and the Electrical Structure of Winter Thunderstorms 1JUNE 1999 TAKAHASHI ET AL. 1561 Charges on Graupel and Snow Crystals and the Electrical Structure of Winter Thunderstorms TSUTOMU TAKAHASHI School of International Studies, Obirin University, Machida-shi, Tokyo, Japan TAKUYA TAJIRI Kyushu University, Hakozaki, Fukuoka, Japan YASUO SONOI Kansai Electric Company, Amagasaki, Osaka, Japan (Manuscript received 1 December 1997, in ®nal form 22 May 1998) ABSTRACT The shape and electric charge on particles in Hokuriku winter cumulus clouds have been measured using videosondes. The sign of the charge on graupel reversed at about 2118C. Charges on graupel and ice crystals are responsible for the tripole structure. The magnitude of the space charge increased as the particle concentrations increased. Graupel concentrations in excess of 1 L21 and an average charge on the precipitation particles of a few tenths of pC produced an accumulated space charge suf®cient to initiate lightning. These ®ndings support the model results reported by Takahashi in which riming electri®cation mechanisms were emphasized as the primary charge separation process. It was also observed that the most active particle-charging process occurred at around the 2208C level. 1. Introduction discharge of a lightning ¯ash is 20 C, the average space charge density for a thunderstorm will be about 5 nC Although recent advances in understanding the phys- m23 or5pCL21. The maximum electric ®eld may then ics of lightning have been important, knowledge of the be calculated as about 1800 V cm21, which is the same mechanisms through which rain clouds are electri®ed order measured by Gunn (1948) and Marshall and Rust still remains elusive (Williams 1988). The lack of in- (1991) as the maximum electric ®eld in the thunder- cloud measurements that can be correlated with labo- storm. Although Workman et al. (1942) reported that ratory and model experiments may be a contributing the upper, positive space charge moves clockwise in a factor. horizontal plane, both the midlevel negative charge and Electric ®eld pro®les taken at the ground during thun- the lower-level positive one exist in the same vertical derstorm passages are best explained by a tripole struc- column (Winn et al. 1981). The question then is how ture. From examination of many in-cloud electric ®eld the midlevel, negative charge remains at that level with- pro®les, Simpson and Scrase (1937) and Simpson and in the precipitation shaft. Robinson (1941) proposed the existence of three Having examined all of the many proposed charge charged regions: an upper, positive charge at about separation mechanisms, Takahashi emphasized riming 2308C; a middle, negative charge at about 2108C; and electri®cation as the primary process (Reynolds et al. a lower, positive charge at about 0 C. By assuming that 8 1957; Takahashi 1978, 1984). In this model, reversal of charges are distributed spherically, the diameter of the the sign of the charge during collisions between graupel middle, negative charge was estimated to be about 2 and ice crystals occurs at about 2108C and is critical km. If, as Workman et al. (1942) have reported the total not only in producing the tripole structure but also in keeping the midlevel charge at a ®xed height (Takahashi 1978, 1984). At about 2108C, negatively charged ice crystals are carried aloft in a gentle updraft and combine Corresponding author address: Dr. Tsutomu Takahashi, School of International Studies, Obirin University, 3758 Tokiwa-machi, Ma- with negatively charged graupel falling from above (Fig. chida-shi, Tokyo 194-0294, Japan. 1), thus enhancing the midlevel charge with increasing E-mail: [email protected] precipitation. The model results also suggest that in or- q 1999 American Meteorological Society Unauthenticated | Downloaded 09/29/21 06:28 AM UTC 1562 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 regions were determined as well as the regions peak electric charges. The measurements were made in winter clouds over Hokuriku, Japan. Cold air from Siberia blows over the warm waters of the Japan Sea producing bands of cu- mulus clouds that, in the winter monsoon, often result in heavy coastal snowfall. Although the clouds may be as shallow as 5 km, they still may produce lightning and have been characterized by Takeuchi et al. (1978) as having higher lightning discharge currents than in sum- mer storms and producing frequent positive discharges to the ground. However, these clouds also have electrical structures similar to the summer thunderstorms reported by Brook et al. (1982), suggesting that the same charge separation mechanism may occur in both instances. The major advantage in choosing the Hokuriku winter clouds is the simplicity of the microphysics involved. They sel- FIG. 1. Model of triple charge formation and accumulation of neg- dom contain raindrops or hail and because they are shal- ative charge proposed by Takahashi (1984). low, the videosonde ascent times are short, minimizing the possibility of modi®cation of the charge distribution during the ascent in the cloud. der to create a charge suf®cient to produce lightning, A description of the videosonde system is given be- the particles must be charged to a few tenths of a pi- low. The observational results were carefully examined, cocoulomb and ice crystals and graupel must be in con- after which typical space charge pro®les were deduced centrations exceeding about 50 and 1.5 L21. The model in relation to the stages of cloud lifetimes. The graupel results also indicate that large particles carrying large charge sign reversal, the peak space charge, and the peak charges are the dominant contributors. particle charge were determined with respect to the Testing the hypothesis requires simultaneous mea- cloud-top temperature and the concentration of graupel. surements of the particle shapes (raindrops, graupel, or A conceptual model is proposed, based upon the ob- ice crystals) and the charges they carry. Gaskell et al. servations. (1978) reported aircraft measurements using an induc- tion ring and an array of photocells and found 1-mm particles carrying 100 pC in the main negative space 2. Observations charge region. Graupel often carry such large charges a. Videosonde (Weinheimer et al. 1991). Marshall and Winn (1982) used a balloon-launched device that involved two in- The videosonde has been designed to measure both duction rings. Bateman et al. (1995) added the optical the shape and the charge on particles in clouds (Taka- sensor to it. They reported particles 1±3 mm in diameter hashi 1990). The signi®cant features of the sonde are carrying charges of a few hundred picocoulombs in the given in Figs. 2a, 2b, and 2c. The video camera records lower positive space charge region within the convective the particle images and an induction ring measures the shower. Takahashi (1983) used a radiosonde system to electric charges they carry. An infrared light is mounted make extensive measurements of charges on particles above the camera with its beam parallel to the camera's in Ponape, Micronesia, by combining induction rings line of sight. Interruption of the beam by any particle and particle identi®cation devices. The results indicated larger than 0.5 mm in diameter triggers the ¯ash lamp the existence of a tripole structure when the top of the mounted just above the camera's lens. The volume seen clouds were above the freezing level and graupel were is 20 3 15 3 29 mm3 with a maximum ¯ash rate of present. However, the results reported above were ob- two per second. In calculating the true sampling volume, tained in the absence of clearly identi®ed precipitation the dead time during which the batteries are recharging particles and a new videosonde system has been de- is subtracted (Takahashi et al. 1995). The sonde has an veloped to correct this de®ciency. additional lamp with a lower priority that also ¯ashes The primary purpose of what follows is to test the twice a second. This lamp aids in the determination of results from a model (Takahashi 1984) using observa- instances of malfunction in the triggered ¯ash as well tions obtained with the video system, namely, 1) for- as taking pictures of particles smaller than those that mation of a tripole structure by graupel and ice crystals, trigger the other lamp. The induction ring, 70 mm in 2) graupel sign reversal at about 2108C, and 3) the diameter and 10 mm high, is mounted at the top of the ability of charges on graupel and ice crystals to form a sonde. Particles enter through a cone above the sonde space charge suf®cient to initiate lightning. The number and the signals are logarithmically ampli®ed. Charges concentrations of these particles in the highly charged are detected in the range of 0.1±200 pC. To minimize Unauthenticated | Downloaded 09/29/21 06:28 AM UTC 1JUNE 1999 TAKAHASHI ET AL. 1563 FIG. 2. (a) Videosonde system. (b) Data display on television screen. Upper LEDs show pressure, temperature, and humidity; lower ones give sign and magnitude of electric charge. (c) Cross section of sampling area. splashing, the outer surface of the cone is covered with Very low concentrations of highly charged precipitation sponge. Corona from the radiosonde may modify the particles from nonthunderstorm clouds (Fig. 14b) may precipitation particle charge; however, this will not be exclude the measurement of bounced particle charges. a serious problem since the radiosonde ascent rate is To protect it from ambient electrical disturbances, the typically 5 m s21. Ions ejected from the radiosonde will entire sonde is encased in aluminum foil. be left behind when the electric ®eld is less than 50 kV Two sets of light-emitting diodes (LEDs) are posi- m21. In the thunderstorm, particle charge of a few hun- tioned on the bottom of the sonde and within the dred picocoulombs is often observed.
Recommended publications
  • Severe Storms in the Midwest
    Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References .......................................................................................................................
    [Show full text]
  • Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetr
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 11-2018 Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations Kun-Yuan Lee University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Atmospheric Sciences Commons, Meteorology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Lee, Kun-Yuan, "Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations" (2018). Dissertations & Theses in Earth and Atmospheric Sciences. 113. https://digitalcommons.unl.edu/geoscidiss/113 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS by Kun-Yuan Lee A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Matthew S. Van Den Broeke Lincoln, Nebraska November, 2018 i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS Kun-Yuan Lee, M.S. University of Nebraska, 2019 Advisor: Matthew S.
    [Show full text]
  • An Improved Representation of Rimed Snow and Conversion to Graupel in a Multicomponent Bin Microphysics Scheme
    MAY 2010 M O R R I S O N A N D G R A B O W S K I 1337 An Improved Representation of Rimed Snow and Conversion to Graupel in a Multicomponent Bin Microphysics Scheme HUGH MORRISON AND WOJCIECH W. GRABOWSKI National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 13 July 2009, in final form 22 January 2010) ABSTRACT This paper describes the development of a new multicomponent detailed bin ice microphysics scheme that predicts the number concentration of ice as well as the rime mass mixing ratio in each mass bin. This allows for local prediction of the rime mass fraction. In this approach, the ice particle mass size, projected area size, and terminal velocity–size relationships vary as a function of particle mass and rimed mass fraction, based on a simple conceptual model of rime accumulation in the crystal interstices that leads to an increase in particle mass, but not in its maximum size, until a complete ‘‘filling in’’ with rime and conversion to graupel occurs. This approach allows a natural representation of the gradual transition from unrimed crystals to rimed crystals and graupel during riming. The new ice scheme is coupled with a detailed bin representation of the liquid hy- drometeors and applied in an idealized 2D kinematic flow model representing the evolution of a mixed-phase precipitating cumulus. Results using the bin scheme are compared with simulations using a two-moment bulk scheme employing the same approach (i.e., separate prediction of bulk ice mixing ratio from vapor deposition and riming, allowing for local prediction of bulk rime mass fraction).
    [Show full text]
  • Storm Spotter's Checklist
    ARE STRONG UPDRAFTS PRESENT? ARE YOU SEEING A “LOOK-ALIKE”? SUGGESTED REPORTING CRITERIA STORM SPOTTER’S CHECKLIST National Weather Service - Memphis, TN ⃞ Thick, sharp-edged anvil ⃞ Scud (not attached to cloud base, likely not URGENT (tornado, flash flood) ⃞ Large, persistent overshooting top rotating) • Tornado ⃞ Hard, cauliflower texture to updraft tower ⃞ Precipitation shaft (likely not rotating, often • Funnel cloud REPORTING TIPS... has a fuzzy or stringy appearance) • PERSISTENT rotating wall cloud ⃞ Moderate to strong inflow winds • Be clear when reporting location (are you ⃞ Smoke/Steam column (originates from a • PERSISTENT low-level rotation signatures giving your location or the event’s?) ⃞ Warm, moist air blowing into storm stationary point, likely not rotating) • Major flooding (roads closed, water rescues) • IMPACTS from heavy rainfall are more • Storm-related damage ⃞ Rain-free base ⃞ “Gustnado” (not associated with updraft, not important than instantaneous rates. ⃞ Inflow bands attached to cloud base) HIGH (non-tornadic supercell, flooding) • If you are unsure of what you’re seeing, make ⃞ Rising scud clouds (possibly) • Hail golf ball size or larger your report but express the uncertainty also. ⃞ Wall cloud WALL CLOUDS vs. SHELF CLOUDS... • Winds 65 mph or stronger • Reports of environmental conditions (outflow, • Persistent non-rotating wall cloud strong warm moist inflow, etc.) are important. • Flooding of uncommon areas WALL CLOUDS • Use teamwork: multiple distances and angles. ARE STRONG DOWNDRAFTS PRESENT? • suggest updraft MEDIUM (near or above severe tstm criteria) ⃞ Shelf cloud or roll cloud • • slope upward away from the precipitation Hail 3/4 inch to golf ball size SAFETY TIPS... ⃞ Rain foot or Dust foot • Winds 45 to 65 mph • Beware of flooding and lightning.
    [Show full text]
  • Ociv-) 35 P Unclas
    c F e F (NASA-CR-180170) A SlODY CE ~EVLBESTORfl ~a7-1~277 I ELEC'IRIClTY VIA S2ChM KNTEIiCEES 4 Eississippi Ociv-) 35 p CSCL 04B Unclas G3/47 43342 6 a e e a e A STUDY OF SEVERE STORM ELECTRICITY VIA STORM INTERCEPT e ROY T. ARNOLD and STEVEN D. HORSBURGH Department of Physics and Astronomy, University of i4ississippi University, MS 38677 e W. DAVID RUST and DON BURGESS National Severe Storms Laboratory Norman, OK 73069 December, 1985 e e a ABSTRACT a We have used storm electricity data, radar data, and visual observations both to present a case study for a supercell thunderstorm that occurred in the Texas ?an- handle on 19 June 1980 and to search for insight into how lightning to ground night be related to storm dynamics in the updraft/downdraft couplet in supercell storms. We observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surround- 0 ing the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was what we consider to be typical for an isolated severe convective storm; the storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stage of the storm's life. 0 e 3 INTRODUCTION 6 Ground intercept of severe convective storms as a scientific project began in 1972 by the National Severe Storms Laboratory (NSSL) in collaboration with the University of Oklahoma (Golden and Morgan, 1972; Lee, 1981).
    [Show full text]
  • The Severe Thunderstorm Electrification and Precipitation Study
    THE SEVERE T HUN DERST ORM ELEC TRIFIC A TIO N A N D PRECIPIT A TIO N STUDY BY TIM O T HY J . L A N G , L. J AY MILLER, M O RRIS W E I S M A N , STEVEN A . RUTLE D GE, LLYLE J . BARKER III, V . N . BRINGI, V . C H A N D R ASEKAR , A N D R E W D E TWILER , N O L A N D O E SKE N , J O H N HELS D O N , CHARLES K N IG H T , PAUL KREHBIEL, W A L T E R A . LY O NS, D O N M A C G O R M A N , ERIK RASMUSSEN, W I L L I A M RIS O N , W . D A VI D RUST , A N D R O N A L D J . T H O M A S Data from a field project on the Colorado - Kansas border in summer 2000 is helping to improve our understanding of positive cloud-to-ground lightning and low- precipitation storms. evere thunderstorms, because of their propensity as they exhibit not only a wide range of electrical ac- to injure, kill, and cause extensive property dam- tivity, but also diversity in precipitation type and Sage, are a primary concern to not only weather amount. One of the more intriguing severe storms forecasters but also the public. However, these storms types in this regard is the supercell thunderstorm remain a puzzling scientific and forecasting problem, (Browning 1964). In its most pristine state, a supercell is a unicellular thunderstorm comprised of a single, long-lived, rotating updraft, and it frequently pro- AFFILIATIONS: LANG, RUTLEDGE, BRINGI, AND CHANDRASEKAR— duces large hail, high winds, prolific lightning, and Colorado State University, Fort Collins, Colorado; MILLER, WEISMAN, occasionally tornadoes.
    [Show full text]
  • AWR-328 Tornado Awareness Instructor Guide
    NATIONAL DISASTER PREPAREDNESS TRAINING CENTER Copyright Information Tornado Awareness © National Disaster Preparedness Training Center, University of Hawai‘i 2019 All Rights Reserved. First Edition 2015 This Printing: October 2019 Printed in the United States of America Reproduction of this document in whole or in part in any form or by any means – graphic, electronic, or mechanical, including photocopying, digital copying, recording, taping, Web distribution, or information storage and retrieval systems is strictly prohibited. This program was supported by Cooperative Agreement Number EMW-2017-CA-00026, administered by the U.S. Department of Homeland Security, National Training and Education Division. Points of view or opinions in this program are those of the author(s) and do not represent the position or policies of the U.S. Department of Homeland Security. Department of Homeland Security reserves a royalty-free, nonexclusive, and irrevocable license to reproduce, publish, or otherwise use, and authorize others to use, for federal government purposes: (1) the copyright in any work developed under an award or subaward; and (2) any rights of copyright to which a recipient or sub-recipient purchases ownership with federal support. FEMA's National Training and Education Division (NTED) offers a full catalog of courses at no- cost to help build critical skills that responders need to function effectively in mass consequence events. Course subjects range from Weapons of Mass Destruction (WMD) terrorism, cybersecurity, and agro-terrorism to citizen preparedness and public works. NTED courses include multiple delivery methods: instructor led (direct deliveries), train-the-trainers (indirect deliveries), customized (conferences and seminars) and web-based.
    [Show full text]
  • Rotation in a Clockwise Direction When Viewed from Above, Similar to A
    Anticyclonic - Rotation in a clockwise direction when viewed from above, similar to a high Multiple-Vortex Tornado - A tornado in which two or more condensation funnels or debris clouds are pressure area. Anticyclonic features rotate from right to left when viewed from the ground. present and often rotate around a common center or each other. Anvil - The flat, spreading top of a cumulonimbus, often shaped like a blacksmith’s anvil. Overshooting Top - A dome-like protrusion above a thunderstorm anvil, representing a strong updraft. Beaver('s) Tail - A low cloud band with a relatively broad, flat appearance suggestive of a Power Flash - A blue-green flash that is often a visual indication of damaging winds. beaver's tail. It is attached to a supercell's updraft base and extends to the east or northeast. Rain Foot - A horizontal bulging of a precipitation shaft near the ground, forming a foot-shaped Clear Slot - A local region of clearing skies or reduced cloud cover, indicating an intrusion of drier prominence. It is a visual indication of strong outflow winds. air. A clear slot is often seen on the west or southwest side of a wall cloud and is visual evidence of a rear flank downdraft. Rain-Free Base - A pronounced outward bend of the precipitation shaft near the ground that has a foot-shaped appearance. It is a visual indication of strong outflow winds. Cyclonic - Rotation in a counterclockwise direction when viewed from above, similar to a low pressure area. Cyclonic features rotate from left to right when viewed from the ground.
    [Show full text]
  • Storm Data and Unusual Weather Phenomena
    Storm Data and Unusual Weather Phenomena Time Path Path Number of Estimated May 2005 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm ALABAMA, Central ALZ044 Montgomery 02 0453CST 0 0 Extreme Cold/Wind Chill The early morning low temperature measured at Dannelly Field was 44 degrees. This low reading tied the previous record low which occurred in 1963 and in 1909. Autauga County 2 N Independence05 1740CST 0 0 0 Hail(0.75) Penny size hail was observed along CR 79 north of the Independence community. Cherokee County 4 SE Gaylesville10 1755CST 0 0 Hail(0.88) Nickel size hail was observed near Gaylesville. The hail completely covered the ground Cherokee County Forney10 1819CST 0 0 Hail(0.75) Penny size hail was reported along US 431 near Forney. Cleburne County 5 N Fruithurst10 1858CST 0 0 Hail(0.75) Penny size hail was reported in the Piney Woods community. Calhoun County Piedmont19 1937CST 0 0 Hail(0.88) Nickel size hail fell in the Piedmont area. Coosa County 5 E Weogufka20 1215CST 0 0 Hail(0.75) Dime to penny size hail fell along and near US 231 east of Weogufka. Blount County 4 E Blountsville20 1302CST 0 0 12K Thunderstorm Wind (G50) A large tree was blown down near Blountsville. The tree landed on a house and caused moderate damage. Blount County Countywide20 1310CST 0 0 14K Thunderstorm Wind (G50) 1335CST Numerous trees and power lines were blown down across the southern half of the county. Walker County 2 NE Carbon Hill20 1338CST 0 0 7K Hail(1.75) Golf ball size hail was observed near the Nauvoo community and near the Prospect community.
    [Show full text]
  • 8B.3 POLARIMETRIC RADAR OBSERVATIONS of TORNADIC DEBRIS SIGNATURES Terry J. Schuur(1), Alexander V. Ryzhkov(1), and Donald W. Bu
    8B.3 POLARIMETRIC RADAR OBSERVATIONS OF TORNADIC DEBRIS SIGNATURES Terry J. Schuur(1), Alexander V. Ryzhkov(1), and Donald W. Burgess(1), Dusan S. Zrnic(2) (1)Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK, 73019 (2)National Severe Storms Laboratory, Norman, OK, 73069 1. Introduction In recent years, polarimetric radars have been and lasted from 2246 until 2310 UTC. The tornado shown to provide improved discrimination between track was at the ranges 45 – 60 km from the radar. meteorological and nonmeteorological radar echoes The 10-cm Cimarron radar measured radar (Zrnic and Ryzhkov 1999, Vivekanandan et al. 1999). reflectivity factor Z at horizontal polarization, mean As demonstrated by Ryzhkov et al. (2002), this can Doppler velocity V, Doppler spectrum width σv, include the detection of tornadic debris signatures. It differential reflectivity ZDR, differential phase ΦDP, is natural to assume that tornadic debris is composed and cross-correlation coefficient ρhv between radar of more or less randomly oriented particles with very returns at two orthogonal polarizations (Zahrai and irregular shapes and a refractive index different from Zrnic 1993). The data were collected at elevations of that of hydrometeors, thereby producing much 0.0º, 0.5º, 1.5º, 2.5º, 4.0º, and 6.0º with an update time different signatures than hydrometeors. Randomly of approximately 6 min. All radar variables were oriented scatterers are characterized by differential measured with a radial resolution of 0.24 km and an reflectivity ZDR equal to zero. If large debris scatterers azimuthal resolution of about 1.9º (although the radar are not chaotically oriented and possess some degree beam has a 0.9º width).
    [Show full text]
  • Severe Weather Spotter's Quick Reference Card Downburst Rain
    Severe Weather Spotter’s Quick Reference Card SURFACE FEATURES UPPER AND MID-LEVEL ASSOCIATION OBSERVATION FEATURES Downburst Rain Foot Tower Dust Foot Anvil Dust Plume Knuckles Funnel Debris Cloud Overshooting Top on the Dust Whirl Back-sheared Anvil Ground Rotation Mammatus Banding Inflow Warm wind into the storm Striations Circulation / Rotation Outflow Cool wind from the storm SYSTEM-LEVEL FEATURES Strong straight-line winds Cell / Supercell Gustnado Multi-cell T-storm Back-building T-storm LOW LEVEL FEATURES Flanking Line ASSOCIATION OBSERVATION Squall Line Inflow Beaver Tail Storm-scale Rotation or Circulation Inflow Bands Updraft Rain-free or Updraft Base WIND Lowering (non-specific) Estimated speed and direction Wall Cloud HAIL Rotation Size, duration, depth Tail Cloud Collar LIGHTNING Funnel in the Air Frequency, direction Rising Scud Vertical Cloud Motion Cloud to Ground Cloud to Cloud Outflow Gust Front Arcus PRECIPITATION Shelf Cloud Intensity, duration, amount Roll Cloud Lowering (non-specific) Remember: Scud or Fractus 1) Give your point number at the Downdraft Downburst beginning and end of each report. Rear Flank Downdraft or 2) Keep your reports brief and specific. Clear Slot 3) EVERYONE is listening; behave professionally on and off the air. Precipitation Rain Shaft WARNING: This reference card and the accompanying glossary ARE NOT a substitute for training! No one should attempt storm spotting without first obtaining the proper training! Gregory Brown, KTØK [email protected] Spring 2006 These definitions of terms used in the Spotters Quick Reference Card are excerpted from NOAA Technical Memorandum NWS SR-145, A Comprehensive Glossary of Weather Terms for Storm Spotters, by Michael Branick, NOAA/NWSFO Norman.
    [Show full text]
  • Supercell Thunderstorm
    Thunderstorm Basics Section 2 Features Indicating Strong/Severe Storms Anvil: The anvil is the elongated cloud at the top of the storm that spreads downwind with upper level steering winds. The anvil will appear solid, not wispy, and will have sharp, well defined edges. Overshooting Top: The overshooting top is the dome of cloud directly above the main storm updraft tower and the anvil. If the overshooting top is persistent and lasts for 10 minutes or longer, it is generally a sign of a very strong thunderstorm updraft. Shown is a severe thunderstorm in the distance with a visible thick anvil and large overshooting top. Photo by Gene Rhoden. Main Storm Tower: The “trunk” of the storm is the visible updraft of the storm from its base near the ground to just below the anvil. This part of the storm can show: Vertically oriented tower, with sharp, well defined edges Solid, cauliflower appearance Visible rotation of the middle and lower levels, and possibly striations evident in the clouds Rain-free Base: The area below the main storm tower. It is generally on the south or southwestern flank of a storm. 19 Spotter’s Field Guide SEVERE LOCAL STORMS Wall Cloud: A wall cloud is an isolated lower cloud attached to the rain- free base and below the main storm tower. Wall clouds often are on the trailing side of a storm. For example, with a storm that is moving to the north or northeast, the wall cloud typically is on the south or southwest side of the storm. With some storms, the wall cloud area may be obscured by precipitation.
    [Show full text]