Kathryn M. Zurek University of Michigan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small Scale Problems of the CDM Model
galaxies Article Small Scale Problems of the LCDM Model: A Short Review Antonino Del Popolo 1,2,3,* and Morgan Le Delliou 4,5,6 1 Dipartimento di Fisica e Astronomia, University of Catania , Viale Andrea Doria 6, 95125 Catania, Italy 2 INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy 3 International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal, Brazil 4 Instituto de Física Teorica, Universidade Estadual de São Paulo (IFT-UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2 - Barra Funda, 01140-070 São Paulo, SP Brazil; [email protected] 5 Institute of Theoretical Physics Physics Department, Lanzhou University No. 222, South Tianshui Road, Lanzhou 730000, Gansu, China 6 Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Faculdade de Ciências, Ed. C8, Campo Grande, 1769-016 Lisboa, Portugal † [email protected] Academic Editors: Jose Gaite and Antonaldo Diaferio Received: 30 May 2016; Accepted: 9 December 2016; Published: 16 February 2017 Abstract: The LCDM model, or concordance cosmology, as it is often called, is a paradigm at its maturity. It is clearly able to describe the universe at large scale, even if some issues remain open, such as the cosmological constant problem, the small-scale problems in galaxy formation, or the unexplained anomalies in the CMB. LCDM clearly shows difficulty at small scales, which could be related to our scant understanding, from the nature of dark matter to that of gravity; or to the role of baryon physics, which is not well understood and implemented in simulation codes or in semi-analytic models. -
Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded. -
Arxiv:1306.3244V2 [Astro-Ph.CO] 4 Feb 2014
The Scientific Reach of Multi-Ton Scale Dark Matter Direct Detection Experiments Jayden L. Newsteada, Thomas D. Jacquesa, Lawrence M. Kraussa;b, James B. Dentc, and Francesc Ferrerd a Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA, b Research School of Astronomy and Astrophysics, Mt. Stromlo Observatory, Australian National University, Canberra 2614, Australia, c Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA, and d Physics Department and McDonnell Center for the Space Sciences, Washington University, St Louis, MO 63130, USA (Dated: November 6, 2018) Abstract The next generation of large scale WIMP direct detection experiments have the potential to go beyond the discovery phase and reveal detailed information about both the particle physics and astrophysics of dark matter. We report here on early results arising from the development of a detailed numerical code modeling the proposed DARWIN detector, involving both liquid argon and xenon targets. We incorporate realistic detector physics, particle physics and astrophysical uncertainties and demonstrate to what extent two targets with similar sensitivities can remove various degeneracies and allow a determination of dark matter cross sections and masses while also probing rough aspects of the dark matter phase space distribution. We find that, even assuming arXiv:1306.3244v2 [astro-ph.CO] 4 Feb 2014 dominance of spin-independent scattering, multi-ton scale experiments still have degeneracies that depend sensitively on the dark matter mass, and on the possibility of isospin violation and inelas- ticity in interactions. We find that these experiments are best able to discriminate dark matter properties for dark matter masses less than around 200 GeV. -
The Boundary of Galaxy Clusters and Its Implications on SFR Quenching
The splashback boundary of galaxy clusters in mass and light and its implications for galaxy evolution T.-H. Shin, Ph.D. candidate at UPenn Collaborators: S. Adhikari, E. J. Baxter, C. Chang, B. Jain, N. Battaglia et al. (DES collaboration) (SPT collaboration) (ACT collaboration) https://arxiv.org/abs/1811.06081 (accepted to MNRAS); 2019 paper in preparation Based on ~400 public cluster sample from ACT+SPT Ongoing analysis of 1000+ SZ-selected clusters from DES+ACT+SPT Background Mass and boundary of dark matter halos However, MΔ and RΔ are subject to pseudo-evolution due to the decrease in the ρ ρ reference density ( c or m) Haloes continuously accrete matter; there is no radius within which the matter is fully virialized ⇒ where is the physical boundary of the halos? Credit: Andrey Kravtsov Cosmology with galaxy clusters Galaxy clusters live in the high-mass tail of the halo mass function ⇒ very sensitive to the growth of the structure Ω σ ( m and 8) Thus, it is important to accurately define/measure Tinker et al. (2008) the mass of the cluster Preliminary work by Diemer et al. illuminates that the mass function becomes more universal against redshift when we use so-called “splashback radius” as the physical boundary of the dark matter halos Background ● Galaxies fall into the cluster potential, escaping from the Hubble flow ● They form a sharp “physical” boundary around their first apocenters after the infall, which we call “splashback radius” Background ● A simple spherical collapse model can predict the existence of the splashback feature (Gunn & Gott 1972, Fillmore & Goldreich 1984, Bertschinger 1985, Adhikari et al. -
Dark Matter 18Th May 2021.Pdf
Searches for Dark Matter Seminar presentation 18th May 2021 Iida Kostamo 1/20 Contents • Background and history - How did we end up with the dark matter hypothesis? • Hot and cold dark matter - Candidates for cold dark matter • The halo density profile • Simulations (Millennium and Bolshoi) • Summary Seminar presentation 18th May 2021 Iida Kostamo 2/20 Background • The total mass-energy density of the universe (approximately): 1. 5% ordinary baryonic matter 2. 25% dark matter 3. 70% dark energy • Originally dark matter was referred to as "the missing mass" - 1930's: Fritz Zwicky did research on galaxy clusters • ...The problem is the missing light, not the missing mass, hence "dark matter" Seminar presentation 18th May 2021 Iida Kostamo 3/20 The rotation curves of galaxies • The rotation curve describes how the rotation velocity of an object depends on the distance from the center of the galaxy • Assumption: Kepler's III law, i.e. the rotation velocities decrease with increasing distance • In the 1970's Vera Rubin and her colleagues did research on the rotation curves of various spiral galaxies Seminar presentation 18th May 2021 Iida Kostamo 4/20 The rotation curves of galaxies • H = Hubble constant • The rotation curves become flat when the radius is large enough • The same result for all galaxies: the rotation curves are not descending → There must be non-luminous mass in galaxies Seminar presentation 18th May 2021 Iida Kostamo 5/20 MACHOs (Massive Astrophysical Compact Halo Object) • Objects that emit extremely little or no light → -
Prospects for Dark Matter Detection with Inelastic Transitions of Xenon
Prospects for dark matter detection with inelastic transitions of xenon Christopher McCabe GRAPPA Centre for Excellence, Institute for Theoretical Physics Amsterdam (ITFA), University of Amsterdam, Science Park 904, the Netherlands E-mail: [email protected] Abstract. Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon de- tectors in which dark matter inelastically scatters off the 129Xe or 131Xe isotope. We do this by implementing a realistic simulation of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrim- ination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the 129Xe or 131Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting arXiv:1512.00460v2 [hep-ph] 23 May 2016 an inelastic signal from the axial-vector interaction will be almost entirely excluded. -
Analytical Properties of Einasto Dark Matter Haloes
A&A 540, A70 (2012) Astronomy DOI: 10.1051/0004-6361/201118543 & c ESO 2012 Astrophysics Analytical properties of Einasto dark matter haloes E. Retana-Montenegro1 , E. Van Hese2, G. Gentile2,M.Baes2, and F. Frutos-Alfaro1 1 Escuela de Física, Universidad de Costa Rica, 11501 San Pedro, Costa Rica e-mail: [email protected] 2 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, 9000 Gent, Belgium e-mail: [email protected] Received 29 November 2011 / Accepted 19 January 2012 ABSTRACT Recent high-resolution N-body CDM simulations indicate that nonsingular three-parameter models such as the Einasto profile perform better than the singular two-parameter models, e.g. the Navarro, Frenk and White, in fitting a wide range of dark matter haloes. While many of the basic properties of the Einasto profile have been discussed in previous studies, a number of analytical properties are still not investigated. In particular, a general analytical formula for the surface density, an important quantity that defines the lensing properties of a dark matter halo, is still lacking to date. To this aim, we used a Mellin integral transform formalism to derive a closed expression for the Einasto surface density and related properties in terms of the Fox H and Meijer G functions, which can be written as series expansions. This enables arbitrary-precision calculations of the surface density and the lensing properties of realistic dark matter halo models. Furthermore, we compared the Sérsic and Einasto surface mass densities and found differences between them, which implies that the lensing properties for both profiles differ. -
Isospin Violating Dark Matter
Isospin Violating Dark Matter David Sanford Work with J.L. Feng, J. Kumar, and D. Marfatia UC Irvine Pheno 2011 - Tuesday May 10, 2011 Current State of Light Dark Matter I Great recent interest in CoGeNT light dark matter DAMA (Savage et. al.) CDMS-Si (shallow-site) I Major inconsistencies CDMS-Ge(shallow-site) CDMS-Ge (Soudan) between experimental XENON1 (! 11) XENON10 (! 11) results I DAMA and CoGeNT regions do not agree I XENON10/XENON100 rule out DAMA and CoGeNT I CDMS-Ge (Soudan) rules out much of CoGeNT and all of DAMA I Both DAMA and CoGeNT report annual modulation signals Possible Explanations of the Discrepancy Many theories have been put forward I Inelastic dark matter I Tucker-Smith and Weiner (2001) I Details of Leff in liquid xenon at low recoil energy I Collar and McKinsey (2010) I Channeling in NaI at DAMA I Bernabei et. al. [DAMA] (2007); Bozorgnia, Gelmini, Gondolo (2010) We propose to rescind the assumption of isospin conservation I Unfounded theoretical assumption I Simple resolution of several discrepancies I Also considered by Chang, Liu, Pierce, Weiner, Yavin (2010) I For fp 6= fn, this result must be altered Z I In fact, for fn=fp = − A−Z , σA vanishes from completely destructive interference Z I A−Z decreases for higher Z isotopes Isospin Conservation and Violation I DM-nucleus scattering is Dark Matter Compton Wavelength coherent I The single atom SI scattering cross-section is Nucleus 2 σA / [fpZ + fn(A − Z)] 2 2 / fp A (fp = fn) Z : atomic number A: number of nucleons 2 I Well-known A fp: coupling to protons -
Astrophysical Issues in Indirect DM Detection
Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II – CNRS-IN2P3 (UMR 5299) Max-Planck-Institut für Kernphysik Heidelberg – 1st VII 2013 Outline * Introduction * Practical examples of astrophysical issues (at the Galactic scale) => size of the GCR diffusion zone: relevant to antiprotons, antideuterons, (diffuse gamma-rays) => positron fraction: clarifying the role of local astrophysical sources => impact of DM inhomogeneities: boost + reinterpreting current constraints => diffuse gamma-rays * Perspectives Julien Lavalle, MPIK, Heidelberg, 1st VII 2013 Indirect dark matter detection in the Milky Way Main arguments: But: ● Annihilation final states lead to: gamma-rays + antimatter ● Do we control the backgrounds? ● -rays : lines, spatial + spectral distribution of signals vs bg ● γ Antiprotons are secondaries, not necessarily positrons ● Antimatter cosmic rays: secondary, therefore low bg ● Do the natural DM particle models provide clean signatures? ● DM-induced antimatter has specific spectral properties Julien Lavalle, MPIK, Heidelberg, 1st VII 2013 Indirect dark matter detection in the Milky Way Main arguments: But: ● Annihilation final states lead to: gamma-rays + antimatter ● Do we control the backgrounds? ● -rays : lines, spatial + spectral distribution of signals vs bg ● γ Antiprotons are secondaries, not necessarily positrons ● Antimatter cosmic rays: secondary, therefore low bg ● Do the natural DM particle models provide clean signatures? -
Low-Mass Dark Matter Search with the Darkside-50 Experiment
Low-Mass Dark Matter Search with the DarkSide-50 Experiment P. Agnes,1 I. F. M. Albuquerque,2 T. Alexander,3 A. K. Alton,4 G. R. Araujo,2 D. M. Asner,5 M. Ave,2 H. O. Back,3 B. Baldin,6,a G. Batignani,7, 8 K. Biery,6 V. Bocci,9 G. Bonfini,10 W. Bonivento,11 B. Bottino,12, 13 F. Budano,14, 15 S. Bussino,14, 15 M. Cadeddu,16, 11 M. Cadoni,16, 11 F. Calaprice,17 A. Caminata,13 N. Canci,1, 10 A. Candela,10 M. Caravati,16, 11 M. Cariello,13 M. Carlini,10 M. Carpinelli,18, 19 S. Catalanotti,20, 21 V. Cataudella,20, 21 P. Cavalcante,22, 10 S. Cavuoti,20, 21 R. Cereseto,13 A. Chepurnov,23 C. Cical`o,11 L. Cifarelli,24, 25 A. G. Cocco,21 G. Covone,20, 21 D. D'Angelo,26, 27 M. D'Incecco,10 D. D'Urso,18, 19 S. Davini,13 A. De Candia,20, 21 S. De Cecco,9, 28 M. De Deo,10 G. De Filippis,20, 21 G. De Rosa,20, 21 M. De Vincenzi,14, 15 P. Demontis,18, 19, 29 A. V. Derbin,30 A. Devoto,16, 11 F. Di Eusanio,17 G. Di Pietro,10, 27 C. Dionisi,9, 28 M. Downing,31 E. Edkins,32 A. Empl,1 A. Fan,33 G. Fiorillo,20, 21 K. Fomenko,34 D. Franco,35 F. Gabriele,10 A. Gabrieli,18, 19 C. Galbiati,17, 36 P. Garcia Abia,37 C. Ghiano,10 S. Giagu,9, 28 C. -
Cosmology Meets Condensed Matter
Cosmology Meets Condensed Matter Mark N. Brook Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy. July 2010 The Feynman Problem-Solving Algorithm: 1. Write down the problem 2. Think very hard 3. Write down the answer – R. P. Feynman att. to M. Gell-Mann Supervisor: Prof. Peter Coles Examiners: Prof. Ed Copeland Prof. Ray Rivers Abstract This thesis is concerned with the interface of cosmology and condensed matter. Although at either end of the scale spectrum, the two disciplines have more in common than one might think. Condensed matter theorists and high-energy field theorists study, usually independently, phenomena embedded in the structure of a quantum field theory. It would appear at first glance that these phenomena are disjoint, and this has often led to the two fields developing their own procedures and strategies, and adopting their own nomenclature. We will look at some concepts that have helped bridge the gap between the two sub- jects, enabling progress in both, before incorporating condensed matter techniques to our own cosmological model. By considering ideas from cosmological high-energy field theory, we then critically examine other models of astrophysical condensed mat- ter phenomena. In Chapter 1, we introduce the current cosmological paradigm, and present a somewhat historical overview of the interplay between cosmology and condensed matter. Many concepts are introduced here that later chapters will follow up on, and we give some examples in which condensed matter physics has had a very real effect on informing cosmology. We also reflect on the most recent incarnations of the condensed matter / cosmology interplay, and the future of these developments. -
Jianglai Liu Shanghai Jiao Tong University
Jianglai Liu Shanghai Jiao Tong University Jianglai Liu Pheno 2017 1 If DM particles have non-gravitational interaction with normal matter, can be detected in “laboratories”. DM DM Collider Search Indirect Search ? SM SM Direct Search Pheno 2017 Jianglai Liu Pheno 2017 2 Galactic halo . The solar system is cycling the center of galaxy with on average 220 km/s speed (annual modulation in earth movement) . DM local density around us: 0.3(0.1) GeV/cm3 Astrophys. J. 756:89 Inclusion of new LAMOST survey data: 0.32(0.02), arXiv:1604.01216 Jianglai Liu Pheno 2017 3 1973: discovery of neutral current Gargamelle detector in CERN neutrino beam Dieter Haidt, CERN Courier Oct 2004: “The searches for neutral currents in previous neutrino experiments resulted in discouragingly low limits (@1968), and it was somehow commonly concluded that no weak neutral currents existed.” leptonic NC hadronic NC v beam Jianglai Liu Pheno 2017 4 Direct detection A = m2/m1 . DM: velocity ~1/1500 c, mass ~100 GeV, KE ~ 20 keV . Nuclear recoil (NR, “hadronic”): recoiling energy ~10 keV . Electron recoil (ER, “leptonic”): 10-4 suppression in energy, very difficult to detect New ideas exist, e.g. Hochberg, Zhao, and Zurek, PRL 116, 011301 Jianglai Liu Pheno 2017 5 Elastic recoil spectrum . Energy threshold mass DM . SI: coherent scattering on all nucleons (A2 Ge Xe enhancement) . Note, spin-dependent Si effect can be viewed as scattering with outer unpaired nucleon. No luxury of A2 enhancement Gaitskell, Annu. Rev. Nucl. Part. Sci. 2004 Jianglai Liu Pheno 2017 6 Neutrino “floor” Goodman & Witten Ideas do exist Phys.