First Record of Protura (Hexapoda) in Israel with Notes on Their Distribution and Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Going Deeper Into High and Low Phylogenetic Relationships of Protura
G C A T T A C G G C A T genes Article Going Deeper into High and Low Phylogenetic Relationships of Protura 1, , 2,3, 3 1 1 Antonio Carapelli * y , Yun Bu y, Wan-Jun Chen , Francesco Nardi , Chiara Leo , Francesco Frati 1 and Yun-Xia Luan 3,4,* 1 Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; [email protected] (F.N.); [email protected] (C.L.); [email protected] (F.F.) 2 Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041, China; [email protected] 3 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; [email protected] 4 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China * Correspondence: [email protected] (A.C.); [email protected] (Y.-X.L.); Tel.: +39-0577-234410 (A.C.); +86-18918100826 (Y.-X.L.) These authors contributed equally to this work. y Received: 16 March 2019; Accepted: 5 April 2019; Published: 10 April 2019 Abstract: Proturans are small, wingless, soil-dwelling arthropods, generally associated with the early diversification of Hexapoda. Their bizarre morphology, together with conflicting results of molecular studies, has nevertheless made their classification ambiguous. Furthermore, their limited dispersal capability (due to the primarily absence of wings) and their euedaphic lifestyle have greatly complicated species-level identification. -
First Evidence of Specialized Feeding on Ectomycorrhizal
Bluhm et al. BMC Ecol (2019) 19:10 https://doi.org/10.1186/s12898-019-0227-y BMC Ecology RESEARCH ARTICLE Open Access Protura are unique: frst evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates Sarah L. Bluhm1*, Anton M. Potapov1,2, Julia Shrubovych3,4,5, Silke Ammerschubert6, Andrea Polle6 and Stefan Scheu1,7 Abstract Background: Ectomycorrhizal fungi (ECM) play a central role in nutrient cycling in boreal and temperate forests, but their role in the soil food web remains little understood. One of the groups assumed to live as specialised mycorrhizal feeders are Protura, but experimental and feld evidence is lacking. We used a combination of three methods to test if Protura are specialized mycorrhizal feeders and compared their trophic niche with other soil invertebrates. Using pulse labelling of young beech and ash seedlings we analysed the incorporation of 13C and 15N into Acerentomon gallicum. In addition, individuals of Protura from temperate forests were collected for the analysis of neutral lipid fatty acids and natural variations in stable isotope ratios. Results: Pulse labelling showed rapid incorporation of root-derived 13C, but no incorporation of root-derived 15N into A. gallicum. The transfer of 13C from lateral roots to ectomycorrhizal root tips was high, while it was low for 15N. Neutral lipid fatty acid (NLFA) analysis showed high amounts of bacterial marker (16:1ω7) and plant marker (16:0 and 18:1ω9) fatty acids but not of the fungal membrane lipid 18:2ω6,9 in A. gallicum. Natural variations in stable isotope ratios in Protura from a number of temperate forests were distinct from those of the great majority of other soil invertebrates, but remarkably similar to those of sporocarps of ECM fungi. -
Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses. -
Pancrustacean Phylogeny in the Light of New Phylogenomic Data
MBE Advance Access published November 1, 2011 Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda Research Article Downloaded from Bjoern M von Reumont1§, Ronald A Jenner2, Matthew A Wills3, Emiliano 4 4 5 6 Dell’Ampio , Günther Pass , Ingo Ebersberger , Benjamin Meyer , Stefan http://mbe.oxfordjournals.org/ Koenemann7, Thomas M Iliffe8, Alexandros Stamatakis9, Oliver Niehuis1, Karen Meusemann1, Bernhard Misof 1 at Vienna University Library on November 11, 2011 1 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany 2 Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 3 Department of Biology and Biochemistry, University of Bath, The Avenue, Claverton Down, BA2 7AY, UK, Bath, United Kingdom 4 Department of Evolutionary Biology, University of Vienna, Althanstraße 14, A- 1090, Vienna, Austria 5 Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Medical University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria 6 Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, Martin- Luther-King Platz 3, D-20146 Hamburg, Germany - 1 - Ó The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: [email protected] 7 Section Biology, Science and Technology, University of Siegen, Adolf-Reichwein- Straße -
The Entomologist's Record and Journal of Variation
M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. -
For the Love of Insects
For the Love of Insects “In terms of biomass and their interactions with other terrestrial organisms, insects are the most important group of terrestrial animals.” --Grimaldi and Engel, 2005 Outline • The Most Successful Animals on Earth: a Brief (Entomological) Journey through Time • Insect Physiology and Development • Common Insects and their Identification Whence and Whither: Insect Origins and Evolution Before diversity, there was evolution… A ~500 million year journey… Silurian • Insect Flight: 400 mya • Modern insect orders: 250 mya • Primitive mammals: 120 mya • Modern mammals: 60 mya The Jointed Animals Phylum: Arthropoda • 75% of all species on earth are arthropods • Internal/External specialization of body parts = tagmosis • Hardened exoskeleton • Articulated body plates • Paired, jointed appendages sciencenewsjournal.com Tagmosis: highly specialized body segments found in all arthropods; insects: head, thorax, abdomen; spiders: cephalothorax and opisthosoma Epiclass HEXAPODA: Late Silurian/Early Devonian Class Entognatha Order Diplura Ellipura Order Protura Order Collembola Class Insecta (= Ectognatha) Hexapoda • 6 legs; 11 abdominal segments (or fewer) taxondiversity.fieldofscience.com • Entognatha: Protura, Diplura, and Collembola • Ectognatha: Insects The First Insects: Apterygota Archaeognatha: The Jumping Bristletails • ~500 spp. worldwide; wide range of habitats; • 4 Families (2 extinct) which occur mostly in rocky habitats • Mostly detritovores, but scavenge dead arthropods or eat exuviae; • Indirect mating behavior; -
Systematic and Biogeographical Study of Protura (Hexapoda) in Russian Far East: New Data on High Endemism of the Group
A peer-reviewed open-access journal ZooKeys 424:Systematic 19–57 (2014) and biogeographical study of Protura (Hexapoda) in Russian Far East... 19 doi: 10.3897/zookeys.424.7388 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Systematic and biogeographical study of Protura (Hexapoda) in Russian Far East: new data on high endemism of the group Yun Bu1, Mikhail B. Potapov2, Wen Ying Yin1 1 Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China 2 Moscow State Pedagogical University, Kibalchich str., 6, korp. 5, Moscow, 129278 Russia Corresponding author: Yun Bu ([email protected]) Academic editor: L. Deharveng | Received 4 March 2014 | Accepted 4 June 2014 | Published 8 July 2014 http://zoobank.org/38EAC4B7-8834-4054-B9AC-9747AC476543 Citation: Bu Y, Potapov MB, Yin WY (2014) Systematic and biogeographical study of Protura (Hexapoda) in Russian Far East: new data on high endemism of the group. ZooKeys 424: 19–57. doi: 10.3897/zookeys.424.7388 Abstract Proturan collections from Magadan Oblast, Khabarovsk Krai, Primorsky Krai, and Sakhalin Oblast are re- ported here. Twenty-five species are found of which 13 species are new records for Russian Far East which enrich the knowledge of Protura known for this area. Three new species Baculentulus krabbensis sp. n., Fjellbergella lazovskiensis sp. n. and Yichunentulus alpatovi sp. n. are illustrated and described. The new materials of Imadateiella sharovi (Martynova, 1977) are studied and described in details. Two new combi- nations, Yichunentulus borealis (Nakamura, 2004), comb. n. and Fjellbergella jilinensis (Wu & Yin, 2007), comb. -
Atti Accademia Nazionale Italiana Di Entomologia Anno LIX, 2011: 9-27
ATTI DELLA ACCADEMIA NAZIONALE ITALIANA DI ENTOMOLOGIA RENDICONTI Anno LIX 2011 TIPOGRAFIA COPPINI - FIRENZE ISSN 0065-0757 Direttore Responsabile: Prof. Romano Dallai Presidente Accademia Nazionale Italiana di Entomologia Coordinatore della Redazione: Dr. Roberto Nannelli La responsabilità dei lavori pubblicati è esclusivamente degli autori Registrazione al Tribunale di Firenze n. 5422 del 24 maggio 2005 INDICE Rendiconti Consiglio di Presidenza . Pag. 5 Elenco degli Accademici . »6 Verbali delle adunanze del 18-19 febbraio 2011 . »9 Verbali delle adunanze del 13 giugno 2011 . »15 Verbali delle adunanze del 18-19 novembre 2011 . »20 Commemorazioni GIUSEPPE OSELLA – Sandro Ruffo: uomo e scienziato. Ricordi di un collaboratore . »29 FRANCESCO PENNACCHIO – Ermenegildo Tremblay . »35 STEFANO MAINI – Giorgio Celli (1935-2011) . »51 Tavola rotonda su: L’ENTOMOLOGIA MERCEOLOGICA PER LA PREVENZIONE E LA LOTTA CONTRO GLI INFESTANTI NELLE INDUSTRIE ALIMENTARI VACLAV STEJSKAL – The role of urban entomology to ensure food safety and security . »69 PIERO CRAVEDI, LUCIANO SÜSS – Sviluppo delle conoscenze in Italia sugli organismi infestanti in post- raccolta: passato, presente, futuro . »75 PASQUALE TREMATERRA – Riflessioni sui feromoni degli insetti infestanti le derrate alimentari . »83 AGATINO RUSSO – Limiti e prospettive delle applicazioni di lotta biologica in post-raccolta . »91 GIACINTO SALVATORE GERMINARA, ANTONIO DE CRISTOFARO, GIUSEPPE ROTUNDO – Attività biologica di composti volatili dei cereali verso Sitophilus spp. » 101 MICHELE MAROLI – La contaminazione entomatica nella filiera degli alimenti di origine vegetale: con- trollo igienico sanitario e limiti di tolleranza . » 107 Giornata culturale su: EVOLUZIONE ED ADATTAMENTI DEGLI ARTROPODI CONTRIBUTI DI BASE ALLA CONOSCENZA DEGLI INSETTI ANTONIO CARAPELLI, FRANCESCO NARDI, ROMANO DALLAI, FRANCESCO FRATI – La filogenesi degli esa- podi basali, aspetti controversi e recenti acquisizioni . -
Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium Hertigii
Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii Thomas Penz1., Stephan Schmitz-Esser1,2., Suzanne E. Kelly3, Bodil N. Cass4, Anneliese Mu¨ ller2, Tanja Woyke5, Stephanie A. Malfatti5, Martha S. Hunter3*, Matthias Horn1* 1 Department of Microbial Ecology, University of Vienna, Vienna, Austria, 2 Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria, 3 Department of Entomology, The University of Arizona, Tucson, Arizona, United States of America, 4 Graduate Interdisciplinary Program in Entomology and Insect Science, The University of Arizona, Tucson, Arizona, United States of America, 5 U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America Abstract Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. -
Protura: Acerentomidae Sl
Eur. J. Entorno?. 98: 249-255, 2001 ISSN 1210-5759 Vindobonella leopoldina gen. n., sp. n. from Austria (Protura: Acerentomidae s. 1.) An drzej SZEPTYCKI1 and E rhard CHRISTIAN2 1 Institute of Systematics and Evolution ofAnimals ofthe Polish Academy of Sciences, ul. Slawkowska 17,31016 Kraków, Poland; e-mail: [email protected] 2 Institute ofZoology, University ofAgricultural Sciences, Gregor-Mendel-StraBe 33, A-1180 Wien, Austria; e-mail: [email protected] Key words. Protura, Acerentomidae, new genus, new species, taxonomy, Central Europe Abstract. A new genus, Vindobonella gen. n. (Acerentomidae s. l.), and a new species, Vindobonella leopoldina sp. n., are described from Vienna. The new genus belongs to a group characterized by a reduced labial palp and a non-modified striate band on abdominal segment VIII. INTRODUCTION microchaeta (cf. Bernard, 1990). Poresl present on meso- An investigation of the soil fauna of the city of Viennaand metanotum, al on mesonotum only. Prosternum with seta A2. revealed two new proturan species of the family Eosento- midae (Szeptycki & Christian, 2000). The new aceren- Foretarsal sensillumb' present, tl claviform,t2 thick tomid species described in the present paper is placed in a and pointed (not filiform and thin as in most Acerentomi dae), t3 cylindrical. Sensillum d inserted proximad to new genus: level of insertion oft2, much nearer toc than to e. Vindobonella gen. n. Seta P3 on abdominal terga II-VI anterior to line Type species: Vindobonella leopoldina sp. n., by P2-P4. Seta P2a on urotergite I is a gemmate original designation. microchaeta,A5 on urotergite I and all accessory setae on abdominal segments II-VII are thin, linear microchaetae. -
Role of Arthropods in Maintaining Soil Fertility
Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. -
The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea Augens, a Key Reference Hexapod for Studying the Emergence of Insect Innovations
bioRxiv preprint doi: https://doi.org/10.1101/585695; this version posted June 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The genome of the blind soil-dwelling and ancestrally wingless dipluran Campodea augens, a key reference hexapod for studying the emergence of insect innovations Mosè Manni1*, Felipe A. Simao1, Hugh M. Robertson2, Marco A. Gabaglio1, Robert M. Waterhouse3, Bernhard Misof4, Oliver Niehuis5, Nikolaus U. Szucsich6, Evgeny M. Zdobnov1* 1Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland. 2Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 3Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland. 4Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany. 5Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany. 6Natural History Museum Vienna, 3rd Zoological Dept., Vienna, Austria. *Authors for Correspondence: Evgeny M. Zdobnov, email: [email protected] Mosè Manni, email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/585695; this version posted June 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.