(Reptilia: Archosauromorpha) from the Upper Triassic of West Texas and Its Biochronological Significance Andrew B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peerj-Review-5963
An unusual archosauromorph tooth increases known archosauromorph diversity in the Comment [1]: Be consistent with the clade you assign the tooth. lower portion of the Chinle Formation (Late Triassic) of southeastern Utah, USA Deleted: tetrapod Comment [2]: Is this formal? If so, Lopez, Andres; St. Aude, Isabella; Alderete, David; Alvarez, David; Aultman, Hannah; Busch, capitalize it. Comment [3]: Remember, readers from around the world could be citing you! Dominique; Bustamante, Rogelio; Cirks, Leah; Lopez, Martin; Moncada, Adriana; Ortega, Elizabeth; Verdugo, Carlos; Gay, Robert J *. Mission Heights Preparatory High School, 1376 E. Cottonwood Ln., Casa Grande, Arizona 85122 *[email protected] 520-836-9383 Abstract: An unusual tetrapod tooth was discovered in the Upper Triassic Chinle Formation of Deleted: Late southeastern Utah. The tooth was originally hypothesized to pertain to Revueltosaurus but Deleted: thought Deleted: belong further investigations have rejected that hypothesis. In this paper, we compare MNA V10668 to other known fossil teeth found in the Chinle Formation and assign the tooth to the least inclusive Comment [4]: Use tooth crowns (there is no root) throughout the text. clade currently available. Using data found in other publications and pictures of other teeth, we Deleted: identify Deleted: it may belongs to compare this specimen to other Triassic dental taxa. MNA V10668 shares some similarities with Crosbysaurus, Tecovasaurus, and several other named taxa but possesses a unique combination Deleted: characteristics of characteristics not found in other archosauromorph teeth. We conclude that it is most likely an Deleted: diapsid archosauromorph and possibly an archosauriform. This increases the known diversity of Deleted: probably archosauromorph from the Chinle Formation and represents the first tooth morphotype Deleted: tetrapods completely unique to Utah in the Late Triassic. -
An Evaluation of the Phylogenetic Relationships of the Pterosaurs Among Archosauromorph Reptiles
Journal of Systematic Palaeontology 5 (4): 465–469 Issued 19 November 2007 doi:10.1017/S1477201907002064 Printed in the United Kingdom C The Natural History Museum An evaluation of the phylogenetic relationships of the pterosaurs among archosauromorph reptiles David W. E. Hone∗ Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK Michael J. Benton Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK SYNOPSIS The phylogenetic position of pterosaurs among the diapsids has long been a contentious issue. Some recent phylogenetic analyses have deepened the controversy by drawing the pterosaurs down the diapsid tree from their generally recognised position as the sister group of the dinosaur- omorphs, to lie close to the base of Archosauria or to be the sister group of the protorosaurs. Critical evaluation of the analyses that produced these results suggests that the orthodox position retains far greater support and no close link can be established between pterosaurs and protorosaurs. KEY WORDS Pterosauria, Prolacertiformes, Archosauria, Archosauromorpha, Ornithodira Contents Introduction 465 Methods and Results 466 Discussion 467 Re-analysis of Bennett (1996) 467 Re-analysis of Peters (2000) 467 Conclusions 469 Acknowledgements 469 References 469 Introduction tained). Muller¨ (2003, 2004) also suggested that the prolacer- tiforms were not a valid clade, with Trilophosaurus splitting The basal archosaurs and their phylogenetic positions relative his two prolacertiform taxa (Prolacerta and Tanystropheus). to one another within the larger clade Archosauromorpha The analysis performed by Senter (2004) also found the pro- have been a source of controversy among palaeontologists lacertiforms to be paraphyletic, although here he removed the for decades. -
A New Archosauriform Reptile with Distinctive Teeth from the Middle Triassic (Ladinian) of Germany
Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis To cite this article: Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis (2020) A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany, Journal of Vertebrate Paleontology, 40:1, e1764968, DOI: 10.1080/02724634.2020.1764968 To link to this article: https://doi.org/10.1080/02724634.2020.1764968 View supplementary material Published online: 23 Jun 2020. Submit your article to this journal Article views: 200 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764968 (14 pages) The work of Hans–Dieter Sues was authored as part of his official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. Rainer R. Schoch, Gabriela Sobral and Randall B. Irmis hereby waive their right to assert copyright, but not their right to be named as co–authors in the article. DOI: 10.1080/02724634.2020.1764968 ARTICLE A NEW ARCHOSAURIFORM REPTILE WITH DISTINCTIVE TEETH FROM THE MIDDLE TRIASSIC (LADINIAN) OF GERMANY HANS-DIETER SUES, *,1 RAINER R. SCHOCH, 2 GABRIELA SOBRAL, 2 and RANDALL B. IRMIS3 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. -
112 Appendix B Hydrogeologic and Soils Factors
APPENDIX B HYDROGEOLOGIC AND SOILS FACTORS INFLUENCING LEAKAGE POTENTIAL FROM THE CONCHAS-HUDSON CANAL SYSTEM, ARCH HURLEY CONSERVANCY DISTRICT, QUAY AND SAN MIGUEL COUNTIES, NEW MEXICO by John W. Hawley, Senior Hydrogeologist New Mexico Water Resources Research Institute and John F. Kennedy, GIS Specialist/Hydrogeologist New Mexico Water Resources Research Institute October 2005 INTRODUCTION The following discussion of geology and soils in the Arch Hurley Conservancy District (District) study area introduces the major landscape features (landforms) and surficial geologic units of the Conchas-Hudson Canal system between Conchas Reservoir in San Miguel County and the eastern part of the Tucumcari (irrigation) Project in Quay County. Emphasis is on hydrogeologic and soils factors that influence leakage from not only the canal corridor but also the complex network of laterals, ditches and field- drainage features that characterize irrigated parts of the District. Of particular importance is the historic role played by Project operations (since 1946) in recharge of the shallow- alluvial and bedrock (Entrada Sandstone) aquifer systems of the Tucumcari Metropolitan area. The latter topic was first addressed in detail by Trauger and Bushman (1964) and is only briefly covered here. 112 The geologic setting of the entire study area is the subject of a recent comprehensive review paper that was written specifically for a general audience by Adrian Hunt (Director, New Mexico Museum of Natural History and Science; 1998). Hydrogeologic characteristics of major stratigraphic units exposed or shallowly buried along the canal corridor are summarized in Table B1, which also includes a list of supporting references. Distribution patterns and leakage potential of surficial-geologic units and soils are summarized in Tables B2-B5 in Attachment B1 to this Appendix. -
The Origin and Early Evolution of Dinosaurs
Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
The Early Evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin
University of Birmingham The early evolution of Rhynchosaurs Butler, Richard; Montefeltro, Felipe; Ezcurra, Martin DOI: 10.3389/fevo.2015.00142 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Butler, R, Montefeltro, F & Ezcurra, M 2016, 'The early evolution of Rhynchosaurs', Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00142 Link to publication on Research at Birmingham portal Publisher Rights Statement: Frontiers is fully compliant with open access mandates, by publishing its articles under the Creative Commons Attribution licence (CC-BY). Funder mandates such as those by the Wellcome Trust (UK), National Institutes of Health (USA) and the Australian Research Council (Australia) are fully compatible with publishing in Frontiers. Authors retain copyright of their work and can deposit their publication in any repository. The work can be freely shared and adapted provided that appropriate credit is given and any changes specified. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
Live Birth in an Archosauromorph Reptile
ARTICLE Received 8 Sep 2016 | Accepted 30 Dec 2016 | Published 14 Feb 2017 DOI: 10.1038/ncomms14445 OPEN Live birth in an archosauromorph reptile Jun Liu1,2,3, Chris L. Organ4, Michael J. Benton5, Matthew C. Brandley6 & Jonathan C. Aitchison7 Live birth has evolved many times independently in vertebrates, such as mammals and diverse groups of lizards and snakes. However, live birth is unknown in the major clade Archosauromorpha, a group that first evolved some 260 million years ago and is represented today by birds and crocodilians. Here we report the discovery of a pregnant long-necked marine reptile (Dinocephalosaurus) from the Middle Triassic (B245 million years ago) of southwest China showing live birth in archosauromorphs. Our discovery pushes back evidence of reproductive biology in the clade by roughly 50 million years, and shows that there is no fundamental reason that archosauromorphs could not achieve live birth. Our phylogenetic models indicate that Dinocephalosaurus determined the sex of their offspring by sex chromosomes rather than by environmental temperature like crocodilians. Our results provide crucial evidence for genotypic sex determination facilitating land-water transitions in amniotes. 1 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China. 2 Chengdu Center, China Geological Survey, Chengdu 610081, China. 3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China. 4 Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA. 5 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 6 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia. -
U.S. Geoligical Survey Scientific Investigations Report 2012–5238
Prepared in cooperation with San Miguel County, New Mexico Characterization of the Hydrologic Resources of San Miguel County, New Mexico, and Identification of Hydrologic Data Gaps, 2011 Scientific Investigations Report 2012–5238 U.S. Department of the Interior U.S. Geological Survey Cover: Canadian escarpment rising above the plains, northeastern San Miguel County (photograph by David Lutz). Characterization of the Hydrologic Resources of San Miguel County, New Mexico, and Identification of Hydrologic Data Gaps, 2011 By Anne Marie Matherne and Anne M. Stewart Prepared in cooperation with San Miguel County, New Mexico Scientific Investigations Report 2012–5238 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This and other USGS information products are available at http://store.usgs.gov/ U.S. Geological Survey Box 25286, Denver Federal Center Denver, CO 80225 To learn about the USGS and its information products visit http://www.usgs.gov/ 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Matherne, A.M., and Stewart, A.M., 2012, Characterization of the hydrologic resources of San Miguel County, New Mexico, and identification of hydrologic data gaps, 2011: U.S. Geological Survey Scientific Investigations Report 2012–5238, 44 p. -
Magnetostratigraphy of the Upper Triassic Chinle Group of New Mexico: Implications for Regional and Global Correlations Among Upper Triassic Sequences
Magnetostratigraphy of the Upper Triassic Chinle Group of New Mexico: Implications for regional and global correlations among Upper Triassic sequences Kate E. Zeigler1,* and John W. Geissman2,* 1Department of Earth and Planetary Sciences, MSC 03-2040 Northrop Hall, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Department of Earth and Planetary Sciences, MSC 03-2040 Northrop Hall, University of New Mexico, Albuquerque, New Mexico 87131, USA, and Department of Geosciences, ROC 21, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, USA ABSTRACT polarity chronologies from upper Chinle graphic correlations (e.g., Reeve, 1975; Reeve and strata in New Mexico and Utah suggest that Helsley, 1972; Bazard and Butler, 1989, 1991; A magnetic polarity zonation for the strata considered to be part of the Rock Point Molina-Garza et al., 1991, 1993, 1996, 1998a, Upper Triassic Chinle Group in the Chama Formation in north-central New Mexico are 1998b, 2003; Steiner and Lucas, 2000). Conse- Basin, north-central New Mexico (United not time equivalent to type Rock Point strata quently, the polarity record of the mudstones and States), supplemented by polarity data from in Utah or to the Redonda Formation of east- claystones, which are the principal rock types in eastern and west-central New Mexico (Mesa ern New Mexico. the Chinle Group, is largely unknown. Redonda and Zuni Mountains, respectively), In our study of Triassic strata in the Chama provides the most complete and continuous INTRODUCTION Basin of north-central New Mexico, we sam- magnetic polarity chronology for the Late pled all components of the Chinle Group, with Triassic of the American Southwest yet avail- The Upper Triassic Chinle Group, prominent a focus on mudstones and claystones at Coyote able. -
Petrified Forest U.S
National Park Service Petrified Forest U.S. Department of the Interior Petrified Forest National Park Petrified Forest, Arizona Triassic Dinosaurs and Other Animals Fossils are clues to the past, allowing researchers to reconstruct ancient environments. During the Late Triassic, the climate was very different from that of today. Located near the equator, this region was humid and tropical, the landscape dominated by a huge river system. Giant reptiles and amphibians, early dinosaurs, fish, and many invertebrates lived among the dense vegetation and in the winding waterways. New fossils come to light as paleontologists continue to study the Triassic treasure trove of Petrified Forest National Park. Invertebrates Scattered throughout the sedimentary species forming vast colonies in the layers of the Chinle Formation are fossils muddy beds of the ancient lakes and of many types of invertebrates. Trace rivers. Antediplodon thomasi is one of the fossils include insect nests, termite clam fossils found in the park. galleries, and beetle borings in the petrified logs. Thin slabs of shale have preserved Horseshoe crabs more delicate animals such as shrimp, Horseshoe crabs have been identified by crayfish, and insects, including the wing of their fossilized tracks (Kouphichnium a cockroach! arizonae), originally left in the soft sediments at the bottom of fresh water Clams lakes and streams. These invertebrates Various freshwater bivalves have been probably ate worms, soft mollusks, plants, found in the Chinle Formation, some and dead fish. Freshwater Fish The freshwater streams and rivers of the (pictured). This large lobe-finned fish Triassic landscape were home to numerous could reach up to 5 feet (1.5 m) long and species of fish. -
Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut