Bayesian Inference for Stable Differential Equation Models With

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Inference for Stable Differential Equation Models With Bayesian inference for stable differential equation models with applications in computational neuroscience Author: Philip Maybank A thesis presented for the degree of doctor of philosophy school of mathematical, physical and computational sciences university of reading February 16, 2019 Remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the universe exist. Be curious. And however difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up. THE LATE PROF STEPHEN HAWKING, 1942-2018 ABSTRACT Inference for mechanistic models is challenging because of nonlinear interactions between model parameters and a lack of identifiability. Here we focus on a specific class of mechanistic models, which we term stable differential equations. The dynamics in these models are approximately linear around a stable fixed point of the system. We exploit this property to develop fast approximate methods for posterior inference. We first illustrate our approach using simulated EEG data on the Liley et al model, a mechanistic neural population model. Then we apply our methods to experimental EEG data from rats to estimate how parameters in the Liley et al model vary with level of isoflurane anaesthesia. More generally, stable differential equation models and the corresponding inference methods are useful for analysis of stationary time-series data. Compared to the existing state-of-the art, our methods are several orders of magnitude faster, and are particularly suited to analysis of long time-series (>10,000 time-points) and models of moderate dimension (10-50 state variables and 10-50 parameters.) 3 ACKNOWLEDGEMENTS I have enjoyed studying Bayesian methodology with Richard Culliford and Changqiong Wang, and Neuroscience with Asad Malik and Catriona Scrivener. I have also been fortunate in being able to participate in the following graduate level training, and international conferences : the 2014-15 Academy for PhD Training in Statistics (APTS); the New Perspectives in Markov Chain Monte Carlo (NPMCMC) 2015 summer school; the International Society for Bayesian Analysis (ISBA) 2016 world meeting in Sardinia; and the Computational Neurosciences (CNS) 2018 meeting in Seattle. And further training in compu- tational skills and software development at the Numerical Algorithms Group (NAG) in Oxford, 2017. The support staff at the University of Reading (Ruth Harris, Brigitte Calderon, Peta-Ann King, and Kristine Aldridge) have given me a lot of practical help and general supportiveness. My PhD supervisors, Richard Everitt and Ingo Bojak, have taught me a lot about their respective fields, and about myself. I would like to thank my family, Gemma and Rowan, for their love and encouragement. 4 DECLARATION I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Philip Maybank CONTENTS List of Figures 11 List of Tables 16 1 introduction 19 2 survey of bayesian methods 25 3 neural population models 61 4 stationary processes and the whittle likelihood 85 5 efficient mcmc samplers for parameter inference 117 6 c++ classes and functions for parameter inference 141 7 eeg data analysis 169 8 summary 187 a eigenvector derivatives 193 Bibliography 197 6 CONTENTS(WITHSUBSECTIONS) List of Figures 11 List of Tables 16 1 introduction 19 2 survey of bayesian methods 25 2.1 Preliminaries 27 2.1.1 Maximum likelihood estimation 28 2.1.2 Optimization 29 2.2 Approximate inference 31 2.2.1 The Laplace approximation 31 2.2.2 Variational approximation 32 2.2.3 Integrated Nested Laplace Approximation 35 2.3 Markov Chain Monte Carlo 36 2.3.1 The Metropolis-Hastings algorithm 36 2.3.2 The Metropolis-within-Gibbs algorithm 37 2.3.3 Sampling efficiency and tuning MH and MwG algorithms 39 2.3.4 Riemannian MCMC 41 2.4 Sequential Monte Carlo 41 2.4.1 Resampling distributions 45 2.5 Pseudo-marginal MCMC 46 2.6 State-space models 47 2.6.1 Discretization of continuous-time state-space models 49 7 Contents (with subsections) 2.6.2 Kalman filter marginal likelihood for linear systems 51 2.6.3 Particle filters for nonlinear systems 53 2.6.4 Particle MCMC for static parameter estimation 56 2.7 Contextual summary 57 3 neural population models 61 3.1 Neurophysiology 62 3.1.1 Electrophysiology 62 3.1.2 Synaptic physiology 65 3.1.3 System dynamics 72 3.1.4 Excitatory-inhibitory networks 74 3.2 Field potentials and the EEG 78 3.3 Anaesthesia 80 3.3.1 Neurophysiology 80 3.3.2 Macroscopic recordings of brain activity 81 3.4 Inference for Neural Population Models 82 4 stationary processes and the whittle likelihood 85 4.1 Preliminaries 86 4.1.1 Stationary Processes 86 4.1.2 The Wiener Process and the damped harmonic oscillator 87 4.1.3 Linearization and approximately stationary processes 90 4.1.4 FitzHugh-Nagumo equations 92 4.2 Spectral Analysis for univariate processes 94 4.2.1 Sums of stationary processes 96 4.2.2 Discrete-time observations of continuous-time processes 96 4.2.3 Whittle likelihood 97 4.3 Spectral analysis for linear systems 99 8 Contents (with subsections) 4.3.1 Derivatives of the spectral density 101 4.4 Evaluating accuracy of Whittle likelihood 104 4.4.1 Evaluating posterior accuracy under linearized model 104 4.4.2 Comparison between Kalman filter and Whittle likelihood on linear model 111 4.5 Discussion 113 5 efficient mcmc samplers for parameter inference 117 5.1 Sensitivity analysis of Liley et al model 118 5.1.1 Effect of changing a single parameter 118 5.1.2 Grid-based likelihood evaluation 119 5.2 Model reparameterization: equilibrium values as parameters 120 5.3 Evaluating efficiency of reparameterization 126 5.3.1 MwG on deterministic FitzHugh Nagumo equations 126 5.3.2 Justifying the use of Whittle likelihood for EEG analysis 127 5.3.3 MwG on stochastic Liley et al model 131 5.3.4 smMALA on stochastic Liley et al model 134 5.4 Discussion 138 6 c++ classes and functions for parameter inference 141 6.1 Whittle likelihood function with parameter vector input 146 6.1.1 A class for parameter vectors that supports element access by name 146 6.1.2 A class for data in the time and frequency domains 148 6.1.3 Evaluating the Whittle likelihood of data given parameters 149 6.1.4 Defining a derived model class to implement a specific model 151 6.2 Posterior density function for single and multiple time-series 152 6.2.1 Evaluating the prior density using a derived class for parameter vec- tors 152 6.2.2 Evaluating the posterior density for a single time-series 153 9 Contents (with subsections) 6.2.3 Evaluating the posterior density for multiple time-series 155 6.2.4 Evaluating derivatives of the posterior density 157 6.3 Sampling from the posterior density with MCMC 158 6.3.1 Plotting and summarizing MCMC results 162 6.4 Maximization of the posterior density 164 6.5 Discussion 166 7 eeg data analysis 169 7.1 Analysis of adult resting state EEG data 170 7.2 Development of prior distribution for NPM parameters 172 7.2.1 Posterior-prior transformation 175 7.3 Development of prior distribution for effect of isoflurane 176 7.3.1 Hill equations for the effect of isoflurane 178 7.3.2 Ratios for the effect of isoflurane 180 7.4 Analysis of EEG data from rats undergoing isoflurane anaesthesia 180 7.4.1 Parameter estimation with uncertainty quantification 182 7.5 Discussion 184 8 summary 187 a eigenvector derivatives 193 Bibliography 197 10 LISTOFFIGURES Figure 4.1 Vector fields for the FitzHugh-Nagumo model (black arrows) and its lin- earization around a stable equilibrium (blue arrows), as well as sample path of nonlinear model (coloured line). Arrows represent the drift term, i.e., the deterministic time-derivative. Left column: Nonlinear model is well approximated by linearization. Right column: Linearized model is not a good approximation in spite of similar likelihood compared to the cases on the left, cf. see Figs. 4.2 and 4.3. I(t) = 0 and P (t) was white 2 noise with variance σin. Top left parameter values for (a, b, c, d, I, σin): (−5, 6000, 40, 4000, 100, 100). Top right: (−30, 6000, 40, 4000, 100, 100). Bottom left: (−30, 6000, 40, 4000, 100, 10). Bottom right: (−150, 3000, 170, 17000, 100, 10). 106 Figure 4.2 Comparison between Kalman filter (solid blue line), EKF (dashed red line) and particle filter (black dots) for the stochastic FitzHugh-Nagumo 2 model. P (t) is white noise with variance σin, observation noise with 2 variance σobs is added. The only unknown parameter is a. The marginal likelihood is estimated on a uniformly spaced sequence of 200 a values. Fixed parameters: b = 6000, c = 40, d = 4000, I0 = 100, I(t) ≡ 0. Time-step in solver and Kalman filter = 10−3, in observations = 10−2. Number of particles = 1000. 109 11 LIST OF FIGURES Figure 4.3 Comparison between marginal MCMC with Kalman filter (left) and EKF (right) on a problem with unknown parameters (a, b, c, I0). Plots show MCMC samples from the joint (a, b) marginal distribution only. Param- eter values: d = 4000, T = 2, σin = 10, σobs = 0.01. Time-step in solver and Kalman filter = 10−3, in observations = 10−2. The MCMC chain started at the true parameters and ran for 10,000 iterations. Plots shows every 500th sample (black dots). The coloured background is a smoothed histogram with blue representing low probability density and yellow representing high probability density.
Recommended publications
  • Tail Estimation of the Spectral Density Under Fixed-Domain Asymptotics
    TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Statistics 2011 ABSTRACT TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu For spatial statistics, two asymptotic approaches are usually considered: increasing domain asymptotics and fixed-domain asymptotics (or infill asymptotics). For increasing domain asymptotics, sampled data increase with the increasing spatial domain, while under infill asymptotics, data are observed on a fixed region with the distance between neighboring ob- servations tending to zero. The consistency and asymptotic results under these two asymp- totic frameworks can be quite different. For example, not all parameters are consistently estimated under infill asymptotics while consistency holds for those parameters under in- creasing asymptotics (Zhang 2004). For a stationary Gaussian random field on Rd with the spectral density f(λ) that satisfies f(λ) ∼ c jλj−θ as jλj ! 1, the parameters c and θ control the tail behavior of the spectral density where θ is related to the smoothness of random field and c can be used to determine the orthogonality of probability measures for a fixed θ. Specially, c corresponds to the microergodic parameter mentioned in Du et al. (2009) when Mat´erncovariance is assumed. Additionally, under infill asymptotics, the tail behavior of the spectral density dominates the performance of the prediction, and the equivalence of the probability measures. Based on those reasons, it is significant in statistics to estimate c and θ.
    [Show full text]
  • Statistica Sinica Preprint No: SS-2016-0112R1
    Statistica Sinica Preprint No: SS-2016-0112R1 Title Inference of Bivariate Long-memory Aggregate Time Series Manuscript ID SS-2016-0112R1 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202016.0112 Complete List of Authors Henghsiu Tsai Heiko Rachinger and Kung-Sik Chan Corresponding Author Henghsiu Tsai E-mail [email protected] Notice: Accepted version subject to English editing. Statistica Sinica: Newly accepted Paper (accepted version subject to English editing) Inference of Bivariate Long-memory Aggregate Time Series Henghsiu Tsai, Heiko Rachinger and Kung-Sik Chan Academia Sinica, University of Vienna and University of Iowa January 5, 2017 Abstract. Multivariate time-series data are increasingly collected, with the increas- ing deployment of affordable and sophisticated sensors. These multivariate time series are often of long memory, the inference of which can be rather complex. We consider the problem of modeling long-memory bivariate time series that are aggregates from an underlying long-memory continuous-time process. We show that with increasing aggre- gation, the resulting discrete-time process is approximately a linear transformation of two independent fractional Gaussian noises with the corresponding Hurst parameters equal to those of the underlying continuous-time processes. We also use simulations to confirm the good approximation of the limiting model to aggregate data from a continuous-time process. The theoretical and numerical results justify modeling long-memory bivari- ate aggregate time series by this limiting model. However, the model parametrization changes drastically in the case of identical Hurst parameters. We derive the likelihood ratio test for testing the equality of the two Hurst parameters, within the framework of Whittle likelihood, and the corresponding maximum likelihood estimators.
    [Show full text]
  • Approximate Likelihood for Large Irregularly Spaced Spatial Data
    Approximate likelihood for large irregularly spaced spatial data1 Montserrat Fuentes SUMMARY Likelihood approaches for large irregularly spaced spatial datasets are often very diffi- cult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n3) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial regular lattices with missing values and for irregularly spaced datasets. This method requires O(nlog2n) operations and does not involve calculat- ing determinants. We present simulations and theoretical results to show the benefits and the performance of the spatial likelihood approximation method presented here for spatial irregularly spaced datasets and lattices with missing values. 1 Introduction Statisticians are frequently involved in the spatial analysis of huge datasets. In this situation, calculating the likelihood function to estimate the covariance parameters or to obtain the predictive posterior density is very difficult due to computational limitations. Even if we 1M. Fuentes is an Associate Professor at the Statistics Department, North Carolina State University (NCSU), Raleigh, NC 27695-8203. Tel.:(919) 515-1921, Fax: (919) 515-1169, E-mail: [email protected]. This research was sponsored by a National Science Foundation grant DMS 0353029. Key words: covariance, Fourier transform, periodogram, spatial statistics, satellite data. 1 can assume normality, calculating the likelihood function involves O(N 3) operations, where N is the number of observations. However, if the observations are on a regular complete lattice, then it is possible to compute the likelihood function with fewer calculations using spectral methods (Whittle 1954, Guyon 1982, Dahlhaus and K¨usch, 1987, Stein 1995, 1999).
    [Show full text]
  • Bayesian Linear Mixed Models with Polygenic Effects
    JSS Journal of Statistical Software June 2018, Volume 85, Issue 6. doi: 10.18637/jss.v085.i06 Bayesian Linear Mixed Models with Polygenic Effects Jing Hua Zhao Jian’an Luan Peter Congdon University of Cambridge University of Cambridge University of London Abstract We considered Bayesian estimation of polygenic effects, in particular heritability in relation to a class of linear mixed models implemented in R (R Core Team 2018). Our ap- proach is applicable to both family-based and population-based studies in human genetics with which a genetic relationship matrix can be derived either from family structure or genome-wide data. Using a simulated and a real data, we demonstrate our implementa- tion of the models in the generic statistical software systems JAGS (Plummer 2017) and Stan (Carpenter et al. 2017) as well as several R packages. In doing so, we have not only provided facilities in R linking standalone programs such as GCTA (Yang, Lee, Goddard, and Visscher 2011) and other packages in R but also addressed some technical issues in the analysis. Our experience with a host of general and special software systems will facilitate investigation into more complex models for both human and nonhuman genetics. Keywords: Bayesian linear mixed models, heritability, polygenic effects, relationship matrix, family-based design, genomewide association study. 1. Introduction The genetic basis of quantitative phenotypes has been a long-standing research problem as- sociated with a large and growing literature, and one of the earliest was by Fisher(1918) on additive effects of genetic variants (the polygenic effects). In human genetics it is common to estimate heritability, the proportion of polygenic variance to the total phenotypic variance, through twin and family studies.
    [Show full text]
  • Risk and Statistics
    Risk and Statistics 2nd ISM-UUlm Joint Workshop October 8 – October 10, 2019 Villa Eberhardt Heidenheimer Straße 80 89075 Ulm Tuesday, October 8 8:00 - 8:45 Registration 8:45 - 9:00 Vicepresident Dieter Rautenbach – Welcome address 9:00 - 9:45 Satoshi Ito (ISM) – Computation of clinch and elimination numbers in league sports based on integer programming 9:45 – 10:30 An Chen (UUlm) – Innovative retirement plans 10:30 – 11:00 Coffee break 11:00 – 11:45 Shunichi Nomura (ISM) – Cluster-based discrimination of foreshocks for earthquake prediction 11:45 – 12:30 Mitja Stadje (UUlm) – On dynamic deviation measures and continuous- time portfolio optimization 12:30 – 14:30 Lunch 14:30 – 15:15 Toshikazu Kitano (Nagoya Institute of Technology) - Applications of bivariate generalized Pareto distribution and the threshold choice 15:15-16:00 Yuma Uehara (ISM) – Bootstrap method for misspecified stochastic differential equation models 16:00 – 16:30 Coffee break 16:30 – 17:15 Motonobu Kanagawa (Eurecom) – Convergence guarantees for adaptive Bayesian quadrature methods 17:15 – 18:00 Rene Schilling (TU Dresden) – On the Liouville property for Lévy generators 18:00 Get together (Rittersaal) Wednesday, October 9 9:00 – 9:45 Denis Belomestny (University of Duisburg-Essen) – Density deconvolution under general assumptions on the distribution of measurement errors 9:45 – 10:30 Teppei Ogihara (University of Tokyo) – Local asymptotic mixed normality for multi-dimensional integrated diffusion processes 10:30 – 11:00 Coffee break 11:00 – 11:45. Satoshi Kuriki (ISM) – Perturbation of the expected Minkowski functional and its applications 11:45 – 12:30 Robert Stelzer, Bennet Ströh (UUlm) – Weak dependence of mixed moving average processes and random fields with applications 12:30 – 14:30 Lunch 14:30 – 16:00 Poster session incl.
    [Show full text]
  • Collective Spectral Density Estimation and Clustering for Spatially
    Collective Spectral Density Estimation and Clustering for Spatially-Correlated Data Tianbo Chen1, Ying Sun1, Mehdi Maadooliat2 Abstract In this paper, we develop a method for estimating and clustering two-dimensional spectral density functions (2D-SDFs) for spatial data from multiple subregions. We use a common set of adaptive basis functions to explain the similarities among the 2D-SDFs in a low-dimensional space and estimate the basis coefficients by maximizing the Whittle likelihood with two penalties. We apply these penalties to impose the smoothness of the estimated 2D-SDFs and the spatial dependence of the spatially-correlated subregions. The proposed technique provides a score matrix, that is comprised of the estimated coefficients associated with the common set of basis functions repre- senting the 2D-SDFs. Instead of clustering the estimated SDFs directly, we propose to employ the score matrix for clustering purposes, taking advantage of its low-dimensional property. In a simulation study, we demonstrate that our proposed method outperforms other competing esti- mation procedures used for clustering. Finally, to validate the described clustering method, we apply the procedure to soil moisture data from the Mississippi basin to produce homogeneous spatial clusters. We produce animations to dynamically show the estimation procedure, includ- arXiv:2007.14085v1 [stat.ME] 28 Jul 2020 ing the estimated 2D-SDFs and the score matrix, which provide an intuitive illustration of the proposed method. Key Words: Dimension reduction; Penalized Whittle likelihood; Spatial data clustering; Spatial dependence; Two-dimensional spectral density functions 1King Abdullah University of Science and Technology (KAUST), Statistics Program, Thuwal 23955-6900, Saudi Arabia.
    [Show full text]
  • Probabilistic Programming in Python Using Pymc3
    Probabilistic programming in Python using PyMC3 John Salvatier1, Thomas V. Wiecki2 and Christopher Fonnesbeck3 1 AI Impacts, Berkeley, CA, United States 2 Quantopian Inc, Boston, MA, United States 3 Department of Biostatistics, Vanderbilt University, Nashville, TN, United States ABSTRACT Probabilistic programming allows for automatic Bayesian inference on user-defined probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC) sampling allow inference on increasingly complex models. This class of MCMC, known as Hamiltonian Monte Carlo, requires gradient information which is often not readily available. PyMC3 is a new open source probabilistic programming framework written in Python that uses Theano to compute gradients via automatic differentiation as well as compile probabilistic programs on-the-fly to C for increased speed. Contrary to other probabilistic programming languages, PyMC3 allows model specification directly in Python code. The lack of a domain specific language allows for great flexibility and direct interaction with the model. This paper is a tutorial-style introduction to this software package. Subjects Data Mining and Machine Learning, Data Science, Scientific Computing and Simulation Keywords Bayesian statistic, Probabilistic Programming, Python, Markov chain Monte Carlo, Statistical modeling INTRODUCTION Probabilistic programming (PP) allows for flexible specification and fitting of Bayesian Submitted 9 September 2015 statistical models. PyMC3 is a new, open-source PP framework with an intuitive and Accepted 8 March 2016 readable, yet powerful, syntax that is close to the natural syntax statisticians use to Published 6 April 2016 describe models. It features next-generation Markov chain Monte Carlo (MCMC) Corresponding author Thomas V. Wiecki, sampling algorithms such as the No-U-Turn Sampler (NUTS) (Hoffman & Gelman, [email protected] 2014), a self-tuning variant of Hamiltonian Monte Carlo (HMC) (Duane et al., 1987).
    [Show full text]
  • The De-Biased Whittle Likelihood
    Biometrika (2018), xx, x, pp. 1–16 Printed in Great Britain The de-biased Whittle likelihood BY ADAM M. SYKULSKI Data Science Institute / Department of Mathematics & Statistics, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K. [email protected] 5 SOFIA C. OLHEDE, ARTHUR P. GUILLAUMIN Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, U.K. [email protected] [email protected] JONATHAN M. LILLY AND JEFFREY J. EARLY 10 NorthWest Research Associates, 4118 148th Ave NE, Redmond, Washington 98052, U.S.A. [email protected] [email protected] SUMMARY The Whittle likelihood is a widely used and computationally efficient pseudo-likelihood. How- 15 ever, it is known to produce biased parameter estimates with finite sample sizes for large classes of models. We propose a method for de-biasing Whittle estimates for second-order stationary stochastic processes. The de-biased Whittle likelihood can be computed in the same O(n log n) operations as the standard Whittle approach. We demonstrate the superior performance of the method in simulation studies and in application to a large-scale oceanographic dataset, where 20 in both cases the de-biased approach reduces bias by up to two orders of magnitude, achieving estimates that are close to those of exact maximum likelihood, at a fraction of the computational cost. We prove that the method yields estimates that are consistent at an optimal convergence rate of n−1=2 for Gaussian, as well as certain classes of non-Gaussian or non-linear processes. This is established under weaker assumptions than standard theory, where the power spectral density is 25 not required to be continuous in frequency.
    [Show full text]
  • Global and Local Stationary Modelling in Finance: Theory and Empirical
    Global and local stationary modelling in finance : theory and empirical evidence Dominique Guegan To cite this version: Dominique Guegan. Global and local stationary modelling in finance : theory and empirical evidence. 2007. halshs-00187875 HAL Id: halshs-00187875 https://halshs.archives-ouvertes.fr/halshs-00187875 Submitted on 15 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Global and Local stationary modelling in finance : Theory and empirical evidence Dominique GUEGAN 2007.53 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://ces.univ-paris1.fr/cesdp/CES-docs.htm ISSN : 1955-611X Global and Local stationary modelling in finance: Theory and empirical evidence Guégan D. ∗ April 8, 2007 Abstract In this paper we deal with the problem of non - stationarity encoun- tered in a lot of data sets coming from existence of multiple season- nalities, jumps, volatility, distorsion, aggregation, etc. We study the problem caused by these non stationarities on the estimation of the sample autocorrelation function and give several examples of mod- els for which spurious behaviors is created by this fact.
    [Show full text]
  • Bayesian Inference on Structural Impulse Response Functions
    Bayesian Inference on Structural Impulse Response Functions Mikkel Plagborg-Møller∗ This version: August 26, 2016. First version: October 26, 2015. Abstract: I propose to estimate structural impulse responses from macroeco- nomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Struc- tural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in appli- cations. Rapid simulation of the posterior of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle. Keywords: Bayesian inference, Hamiltonian Monte Carlo, impulse response function, news shock, nonfundamental, noninvertible, partial identification, structural vector autoregression, structural vector moving average, Whittle likelihood. 1 Introduction Since Sims(1980), Structural Vector Autoregression (SVAR) analysis has been the most popular method for estimating the impulse response functions (IRFs) of observed macro ∗Harvard University, email: [email protected]. I am grateful for comments from Isaiah An- drews, Regis Barnichon, Varanya Chaubey, Gabriel Chodorow-Reich, Peter Ganong, Ben Hébert, Christian Matthes, Pepe Montiel Olea, Frank Schorfheide, Elie Tamer, Harald Uhlig, and seminar participants at Cambridge, Chicago Booth, Columbia, Harvard Economics and Kennedy School, MIT, Penn State, Prince- ton, UCL, UPenn, and the 2015 DAEiNA meeting.
    [Show full text]
  • Package 'Laplacesdemon'
    Package ‘LaplacesDemon’ March 4, 2013 Version 13.03.04 Date 2013-03-04 Title Complete Environment for Bayesian Inference Author Statisticat, LLC <[email protected]> Maintainer Martina Hall <[email protected]> Depends R (>= 2.14.1), parallel ByteCompile TRUE Description Laplace’s Demon is a complete environment for Bayesian inference. License GPL-2 URL http://www.r-project.org, http://www.bayesian-inference.com/software Repository CRAN NeedsCompilation no Date/Publication 2013-03-04 20:36:44 R topics documented: LaplacesDemon-package . .4 ABB.............................................5 as.covar . .7 as.initial.values . .8 as.parm.names . .9 as.ppc . 11 BayesFactor . 12 BayesianBootstrap . 15 BayesTheorem . 17 BMK.Diagnostic . 19 burnin . 21 1 2 R topics documented: caterpillar.plot . 22 CenterScale . 23 Combine . 25 Consort . 27 CSF............................................. 28 data.demonsnacks . 31 de.Finetti.Game . 32 dist.Asymmetric.Laplace . 33 dist.Asymmetric.Log.Laplace . 35 dist.Bernoulli . 36 dist.Categorical . 38 dist.Dirichlet . 39 dist.HalfCauchy . 41 dist.HalfNormal . 42 dist.Halft . 44 dist.Inverse.Beta . 45 dist.Inverse.ChiSquare . 47 dist.Inverse.Gamma . 48 dist.Inverse.Gaussian . 50 dist.Inverse.Wishart . 51 dist.Inverse.Wishart.Cholesky . 53 dist.Laplace . 55 dist.Laplace.Precision . 57 dist.Log.Laplace . 59 dist.Log.Normal.Precision . 60 dist.Multivariate.Cauchy . 62 dist.Multivariate.Cauchy.Cholesky . 64 dist.Multivariate.Cauchy.Precision . 65 dist.Multivariate.Cauchy.Precision.Cholesky . 67 dist.Multivariate.Laplace . 69 dist.Multivariate.Laplace.Cholesky . 71 dist.Multivariate.Normal . 74 dist.Multivariate.Normal.Cholesky . 75 dist.Multivariate.Normal.Precision . 77 dist.Multivariate.Normal.Precision.Cholesky . 79 dist.Multivariate.Polya . 80 dist.Multivariate.Power.Exponential .
    [Show full text]
  • Package 'Beyondwhittle'
    Package ‘beyondWhittle’ July 12, 2019 Type Package Title Bayesian Spectral Inference for Stationary Time Series Version 1.1.1 Date 2019-07-11 Maintainer Alexander Meier <[email protected]> Description Implementations of Bayesian parametric, nonparametric and semiparametric proce- dures for univariate and multivariate time series. The package is based on the methods pre- sented in C. Kirch et al (2018) <doi:10.1214/18- BA1126> and A. Meier (2018) <https://opendata.uni- halle.de//handle/1981185920/13470>. It was supported by DFG grant KI 1443/3-1. License GPL (>= 3) Imports ltsa (>= 1.4.6), Rcpp (>= 0.12.5), MASS, MTS, forecast LinkingTo Rcpp, RcppArmadillo, BH RoxygenNote 6.1.1 NeedsCompilation yes Author Alexander Meier [aut, cre], Claudia Kirch [aut], Matthew C. Edwards [aut], Renate Meyer [aut] Repository CRAN Date/Publication 2019-07-11 22:00:01 UTC R topics documented: beyondWhittle-package . .2 fourier_freq . .3 gibbs_ar . .3 gibbs_np . .6 gibbs_npc . .8 gibbs_var . 11 gibbs_vnp . 13 1 2 beyondWhittle-package pacf_to_ar . 15 plot.gibbs_psd . 16 print.gibbs_psd . 17 psd_arma . 17 psd_varma . 18 rmvnorm . 19 scree_type_ar . 19 sim_varma . 20 summary.gibbs_psd . 21 Index 22 beyondWhittle-package Bayesian spectral inference for stationary time series Description Bayesian parametric, nonparametric and semiparametric procedures for spectral density inference of univariate and multivariate time series Details The package contains several methods (parametric, nonparametric and semiparametric) for Bayesian spectral density inference.
    [Show full text]