Solution and Estimation Methods for Dsge Models

Total Page:16

File Type:pdf, Size:1020Kb

Solution and Estimation Methods for Dsge Models NBER WORKING PAPER SERIES SOLUTION AND ESTIMATION METHODS FOR DSGE MODELS Jesús Fernández-Villaverde Juan F. Rubio Ramírez Frank Schorfheide Working Paper 21862 http://www.nber.org/papers/w21862 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 January 2016 Fernández-Villaverde and Rubio-Ramírez gratefully acknowledges financial support from the National Science Foundation under Grant SES 1223271. Schorfheide gratefully acknowledges financial support from the National Science Foundation under Grant SES 1424843. Minsu Chang, Eugenio Rojas, and Jacob Warren provided excellent research assistance. We thank our discussant Serguei Maliar, the editors John Taylor and Harald Uhlig, John Cochrane, and the participants at the Handbook Conference hosted by the Hoover Institution for helpful comments and suggestions. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2016 by Jesús Fernández-Villaverde, Juan F. Rubio Ramírez, and Frank Schorfheide. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Solution and Estimation Methods for DSGE Models Jesús Fernández-Villaverde, Juan F. Rubio Ramírez, and Frank Schorfheide NBER Working Paper No. 21862 January 2016 JEL No. C11,C13,C32,C52,C61,C63,E32,E52 ABSTRACT This paper provides an overview of solution and estimation techniques for dynamic stochastic general equilibrium (DSGE) models. We cover the foundations of numerical approximation techniques as well as statistical inference and survey the latest developments in the field. Jesús Fernández-Villaverde Frank Schorfheide University of Pennsylvania University of Pennsylvania 160 McNeil Building Department of Economics 3718 Locust Walk 3718 Locust Walk Philadelphia, PA 19104 Philadelphia, PA 19104-6297 and NBER and NBER [email protected] [email protected] Juan F. Rubio Ramírez Emory University Rich Memorial Building Atlanta, GA 30322-2240 and Atlanta Federal Reserve Bank and Fulcrum Asset Management [email protected] Fern´andez-Villaverde, Rubio-Ram´ırez,Schorfheide: This Version December 30, 2015 i Contents 1 Introduction 1 I Solving DSGE Models 3 2 Solution Methods for DSGE Models 3 3 A General Framework 6 3.1 The Stochastic Neoclassical Growth Model . .7 3.2 A Value Function . .8 3.3 Euler Equation . .9 3.4 Conditional Expectations . 10 3.5 The Way Forward . 12 4 Perturbation 13 4.1 The Framework . 14 4.2 The General Case . 16 4.3 A Worked-Out Example . 36 4.4 Pruning . 44 4.5 Change of Variables . 46 4.6 Perturbing the Value Function . 52 Fern´andez-Villaverde, Rubio-Ram´ırez,Schorfheide: This Version December 30, 2015 ii 5 Projection 56 5.1 A Basic Projection Algorithm . 57 5.2 Choice of Basis and Metric Functions . 62 5.3 Spectral Bases . 63 5.4 Finite Elements . 79 5.5 Objective Functions . 85 5.6 A Worked-Out Example . 90 5.7 Smolyak's Algorithm . 93 6 Comparison of Perturbation and Projection Methods 102 7 Error Analysis 104 7.1 A χ2 Accuracy Test . 106 7.2 Euler Equation Errors . 107 7.3 Improving the Error . 111 II Estimating DSGE Models 113 8 Confronting DSGE Models with Data 113 8.1 A Stylized DSGE Model . 114 8.2 Model Implications . 121 8.3 Empirical Analogs . 131 8.4 Dealing with Trends . 139 9 Statistical Inference 140 9.1 Identification . 142 9.2 Frequentist Inference . 146 9.3 Bayesian Inference . 149 Fern´andez-Villaverde, Rubio-Ram´ırez,Schorfheide: This Version December 30, 2015 iii 10 The Likelihood Function 153 10.1 A Generic Filter . 154 10.2 Likelihood Function for a Linearized DSGE Model . 155 10.3 Likelihood Function for Non-linear DSGE Models . 158 11 Frequentist Estimation Techniques 166 11.1 Likelihood-Based Estimation . 166 11.2 (Simulated) Minimum Distance Estimation . 173 11.3 Impulse Response Function Matching . 181 11.4 GMM Estimation . 189 12 Bayesian Estimation Techniques 190 12.1 Prior Distributions . 191 12.2 Metropolis-Hastings Algorithm . 194 12.3 SMC Methods . 203 12.4 Model Diagnostics . 208 12.5 Limited Information Bayesian Inference . 210 13 Conclusion 214 References 215 Fern´andez-Villaverde, Rubio-Ram´ırez,Schorfheide: This Version December 30, 2015 1 1 Introduction The goal of this chapter is to provide an illustrative overview of the state-of-the-art solution and estimation methods for dynamic stochastic general equilibrium (DSGE) models. DSGE models use modern macroeconomic theory to explain and predict comovements of aggregate time series over the business cycle. The term DSGE model encompasses a broad class of macroeconomic models that spans the standard neoclassical growth model discussed in King, Plosser, and Rebelo (1988) as well as New Keynesian monetary models with numerous real and nominal frictions along the lines of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003). A common feature of these models is that decision rules of economic agents are derived from assumptions about preferences, technologies, information, and the prevailing fiscal and monetary policy regime by solving intertemporal optimization problems. As a consequence, the DSGE model paradigm delivers empirical models with a strong degree of theoretical coherence that are attractive as a laboratory for policy experiments. Modern DSGE models are flexible enough to accurately track and forecast macroeconomic time series fairly. They have become one of the workhorses of monetary policy analysis in central banks. The combination of solution and estimation methods in a single chapter reflects our view of the central role of the tight integration of theory and data in macroeconomics. Numerical solution methods allow us to handle the rich DSGE models that are needed for business cycle analysis, policy analysis, and forecasting. Estimation methods enable us to take these models to the data in a rigorous manner. DSGE model solution and estimation techniques are the two pillars that form the basis for understanding the behavior of aggregate variables such as GDP, employment, inflation, and interest rates, using the tools of modern macroeconomics. Unfortunately for PhD students and fortunately for those who have worked with DSGE models for a long time, the barriers to entry into the DSGE literature are quite high. The solution of DSGE models demands familiarity with numerical approximation techniques and the estimation of the models is nonstandard for a variety of reasons, including a state-space representation that requires the use of sophisticated filtering techniques to evaluate the like- lihood function, a likelihood function that depends in a complicated way on the underlying model parameters, and potential model misspecification that renders traditional economet- ric techniques based on the \axiom of correct specification” inappropriate. The goal of this chapter is to lower the barriers to entry into this field by providing an overview of what Fern´andez-Villaverde, Rubio-Ram´ırez,Schorfheide: This Version December 30, 2015 2 have become the \standard" methods of solving and estimating DSGE models in the past decade and by surveying the most recent technical developments. The chapter focuses on methods more than substantive applications, though we provide detailed numerical illustra- tions as well as references to applied research. The material is grouped into two parts. Part I (Sections 2 to 7) is devoted to solution techniques, which are divided into perturbation and projection techniques. Part II (Sections 8 to 12) focuses on estimation. We cover both Bayesian and frequentist estimation and inference techniques. 3 Part I Solving DSGE Models 2 Solution Methods for DSGE Models DSGE models do not admit, except in a few cases, a closed-form solution to their equilibrium dynamics that we can derive with \paper and pencil." Instead, we have to resort to numerical methods and a computer to find an approximated solution. However, numerical analysis and computer programming are not a part of the standard curriculum for economists at either the undergraduate or the graduate level. This educational gap has created three problems. The first problem is that many macroeconomists have been reluctant to accept the limits imposed by analytic results. The cavalier assumptions that are sometimes taken to allow for closed-form solutions may confuse more than clarify. While there is an important role for analytic results for building intuition, for understanding economic mechanisms, and for testing numerical approximations, many of the questions that DSGE models are designed to address require a quantitative answer that only numerical methods can provide. Think, for example, about the optimal response of monetary policy to a negative supply shock. Suggesting that the monetary authority should lower the nominal interest rate to smooth output is not enough for real-world advice. We need to gauge the magnitude and the duration of such an interest rate reduction. Similarly, showing that an increase in government spending raises output does not provide enough information to design an effective countercyclical fiscal package. The second problem is that the lack of familiarity with numerical analysis has led to the slow diffusion of best practices in solution methods and little interest in issues such as the assessment of numerical errors. Unfortunately, the consequences of poor approxima- tions can be severe. Kim and Kim (2003) document how inaccurate solutions may cause spurious welfare reversals. Similarly, the identification of parameter values may depend on the approximated solution. For instance, van Binsbergen, Fern´andez-Villaverde, Koijen, and Rubio-Ram´ırez(2012) show that a DSGE model with recursive preferences needs to be solved with higher-order approximations for all parameters of interest to be identified. Although much progress in the quality of computational work has been made in the last few 4 years, there is still room for improvement.
Recommended publications
  • Tail Estimation of the Spectral Density Under Fixed-Domain Asymptotics
    TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Statistics 2011 ABSTRACT TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu For spatial statistics, two asymptotic approaches are usually considered: increasing domain asymptotics and fixed-domain asymptotics (or infill asymptotics). For increasing domain asymptotics, sampled data increase with the increasing spatial domain, while under infill asymptotics, data are observed on a fixed region with the distance between neighboring ob- servations tending to zero. The consistency and asymptotic results under these two asymp- totic frameworks can be quite different. For example, not all parameters are consistently estimated under infill asymptotics while consistency holds for those parameters under in- creasing asymptotics (Zhang 2004). For a stationary Gaussian random field on Rd with the spectral density f(λ) that satisfies f(λ) ∼ c jλj−θ as jλj ! 1, the parameters c and θ control the tail behavior of the spectral density where θ is related to the smoothness of random field and c can be used to determine the orthogonality of probability measures for a fixed θ. Specially, c corresponds to the microergodic parameter mentioned in Du et al. (2009) when Mat´erncovariance is assumed. Additionally, under infill asymptotics, the tail behavior of the spectral density dominates the performance of the prediction, and the equivalence of the probability measures. Based on those reasons, it is significant in statistics to estimate c and θ.
    [Show full text]
  • Statistica Sinica Preprint No: SS-2016-0112R1
    Statistica Sinica Preprint No: SS-2016-0112R1 Title Inference of Bivariate Long-memory Aggregate Time Series Manuscript ID SS-2016-0112R1 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202016.0112 Complete List of Authors Henghsiu Tsai Heiko Rachinger and Kung-Sik Chan Corresponding Author Henghsiu Tsai E-mail [email protected] Notice: Accepted version subject to English editing. Statistica Sinica: Newly accepted Paper (accepted version subject to English editing) Inference of Bivariate Long-memory Aggregate Time Series Henghsiu Tsai, Heiko Rachinger and Kung-Sik Chan Academia Sinica, University of Vienna and University of Iowa January 5, 2017 Abstract. Multivariate time-series data are increasingly collected, with the increas- ing deployment of affordable and sophisticated sensors. These multivariate time series are often of long memory, the inference of which can be rather complex. We consider the problem of modeling long-memory bivariate time series that are aggregates from an underlying long-memory continuous-time process. We show that with increasing aggre- gation, the resulting discrete-time process is approximately a linear transformation of two independent fractional Gaussian noises with the corresponding Hurst parameters equal to those of the underlying continuous-time processes. We also use simulations to confirm the good approximation of the limiting model to aggregate data from a continuous-time process. The theoretical and numerical results justify modeling long-memory bivari- ate aggregate time series by this limiting model. However, the model parametrization changes drastically in the case of identical Hurst parameters. We derive the likelihood ratio test for testing the equality of the two Hurst parameters, within the framework of Whittle likelihood, and the corresponding maximum likelihood estimators.
    [Show full text]
  • Approximate Likelihood for Large Irregularly Spaced Spatial Data
    Approximate likelihood for large irregularly spaced spatial data1 Montserrat Fuentes SUMMARY Likelihood approaches for large irregularly spaced spatial datasets are often very diffi- cult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n3) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial regular lattices with missing values and for irregularly spaced datasets. This method requires O(nlog2n) operations and does not involve calculat- ing determinants. We present simulations and theoretical results to show the benefits and the performance of the spatial likelihood approximation method presented here for spatial irregularly spaced datasets and lattices with missing values. 1 Introduction Statisticians are frequently involved in the spatial analysis of huge datasets. In this situation, calculating the likelihood function to estimate the covariance parameters or to obtain the predictive posterior density is very difficult due to computational limitations. Even if we 1M. Fuentes is an Associate Professor at the Statistics Department, North Carolina State University (NCSU), Raleigh, NC 27695-8203. Tel.:(919) 515-1921, Fax: (919) 515-1169, E-mail: [email protected]. This research was sponsored by a National Science Foundation grant DMS 0353029. Key words: covariance, Fourier transform, periodogram, spatial statistics, satellite data. 1 can assume normality, calculating the likelihood function involves O(N 3) operations, where N is the number of observations. However, if the observations are on a regular complete lattice, then it is possible to compute the likelihood function with fewer calculations using spectral methods (Whittle 1954, Guyon 1982, Dahlhaus and K¨usch, 1987, Stein 1995, 1999).
    [Show full text]
  • Risk and Statistics
    Risk and Statistics 2nd ISM-UUlm Joint Workshop October 8 – October 10, 2019 Villa Eberhardt Heidenheimer Straße 80 89075 Ulm Tuesday, October 8 8:00 - 8:45 Registration 8:45 - 9:00 Vicepresident Dieter Rautenbach – Welcome address 9:00 - 9:45 Satoshi Ito (ISM) – Computation of clinch and elimination numbers in league sports based on integer programming 9:45 – 10:30 An Chen (UUlm) – Innovative retirement plans 10:30 – 11:00 Coffee break 11:00 – 11:45 Shunichi Nomura (ISM) – Cluster-based discrimination of foreshocks for earthquake prediction 11:45 – 12:30 Mitja Stadje (UUlm) – On dynamic deviation measures and continuous- time portfolio optimization 12:30 – 14:30 Lunch 14:30 – 15:15 Toshikazu Kitano (Nagoya Institute of Technology) - Applications of bivariate generalized Pareto distribution and the threshold choice 15:15-16:00 Yuma Uehara (ISM) – Bootstrap method for misspecified stochastic differential equation models 16:00 – 16:30 Coffee break 16:30 – 17:15 Motonobu Kanagawa (Eurecom) – Convergence guarantees for adaptive Bayesian quadrature methods 17:15 – 18:00 Rene Schilling (TU Dresden) – On the Liouville property for Lévy generators 18:00 Get together (Rittersaal) Wednesday, October 9 9:00 – 9:45 Denis Belomestny (University of Duisburg-Essen) – Density deconvolution under general assumptions on the distribution of measurement errors 9:45 – 10:30 Teppei Ogihara (University of Tokyo) – Local asymptotic mixed normality for multi-dimensional integrated diffusion processes 10:30 – 11:00 Coffee break 11:00 – 11:45. Satoshi Kuriki (ISM) – Perturbation of the expected Minkowski functional and its applications 11:45 – 12:30 Robert Stelzer, Bennet Ströh (UUlm) – Weak dependence of mixed moving average processes and random fields with applications 12:30 – 14:30 Lunch 14:30 – 16:00 Poster session incl.
    [Show full text]
  • Collective Spectral Density Estimation and Clustering for Spatially
    Collective Spectral Density Estimation and Clustering for Spatially-Correlated Data Tianbo Chen1, Ying Sun1, Mehdi Maadooliat2 Abstract In this paper, we develop a method for estimating and clustering two-dimensional spectral density functions (2D-SDFs) for spatial data from multiple subregions. We use a common set of adaptive basis functions to explain the similarities among the 2D-SDFs in a low-dimensional space and estimate the basis coefficients by maximizing the Whittle likelihood with two penalties. We apply these penalties to impose the smoothness of the estimated 2D-SDFs and the spatial dependence of the spatially-correlated subregions. The proposed technique provides a score matrix, that is comprised of the estimated coefficients associated with the common set of basis functions repre- senting the 2D-SDFs. Instead of clustering the estimated SDFs directly, we propose to employ the score matrix for clustering purposes, taking advantage of its low-dimensional property. In a simulation study, we demonstrate that our proposed method outperforms other competing esti- mation procedures used for clustering. Finally, to validate the described clustering method, we apply the procedure to soil moisture data from the Mississippi basin to produce homogeneous spatial clusters. We produce animations to dynamically show the estimation procedure, includ- arXiv:2007.14085v1 [stat.ME] 28 Jul 2020 ing the estimated 2D-SDFs and the score matrix, which provide an intuitive illustration of the proposed method. Key Words: Dimension reduction; Penalized Whittle likelihood; Spatial data clustering; Spatial dependence; Two-dimensional spectral density functions 1King Abdullah University of Science and Technology (KAUST), Statistics Program, Thuwal 23955-6900, Saudi Arabia.
    [Show full text]
  • The De-Biased Whittle Likelihood
    Biometrika (2018), xx, x, pp. 1–16 Printed in Great Britain The de-biased Whittle likelihood BY ADAM M. SYKULSKI Data Science Institute / Department of Mathematics & Statistics, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K. [email protected] 5 SOFIA C. OLHEDE, ARTHUR P. GUILLAUMIN Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, U.K. [email protected] [email protected] JONATHAN M. LILLY AND JEFFREY J. EARLY 10 NorthWest Research Associates, 4118 148th Ave NE, Redmond, Washington 98052, U.S.A. [email protected] [email protected] SUMMARY The Whittle likelihood is a widely used and computationally efficient pseudo-likelihood. How- 15 ever, it is known to produce biased parameter estimates with finite sample sizes for large classes of models. We propose a method for de-biasing Whittle estimates for second-order stationary stochastic processes. The de-biased Whittle likelihood can be computed in the same O(n log n) operations as the standard Whittle approach. We demonstrate the superior performance of the method in simulation studies and in application to a large-scale oceanographic dataset, where 20 in both cases the de-biased approach reduces bias by up to two orders of magnitude, achieving estimates that are close to those of exact maximum likelihood, at a fraction of the computational cost. We prove that the method yields estimates that are consistent at an optimal convergence rate of n−1=2 for Gaussian, as well as certain classes of non-Gaussian or non-linear processes. This is established under weaker assumptions than standard theory, where the power spectral density is 25 not required to be continuous in frequency.
    [Show full text]
  • Global and Local Stationary Modelling in Finance: Theory and Empirical
    Global and local stationary modelling in finance : theory and empirical evidence Dominique Guegan To cite this version: Dominique Guegan. Global and local stationary modelling in finance : theory and empirical evidence. 2007. halshs-00187875 HAL Id: halshs-00187875 https://halshs.archives-ouvertes.fr/halshs-00187875 Submitted on 15 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Global and Local stationary modelling in finance : Theory and empirical evidence Dominique GUEGAN 2007.53 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://ces.univ-paris1.fr/cesdp/CES-docs.htm ISSN : 1955-611X Global and Local stationary modelling in finance: Theory and empirical evidence Guégan D. ∗ April 8, 2007 Abstract In this paper we deal with the problem of non - stationarity encoun- tered in a lot of data sets coming from existence of multiple season- nalities, jumps, volatility, distorsion, aggregation, etc. We study the problem caused by these non stationarities on the estimation of the sample autocorrelation function and give several examples of mod- els for which spurious behaviors is created by this fact.
    [Show full text]
  • Bayesian Inference on Structural Impulse Response Functions
    Bayesian Inference on Structural Impulse Response Functions Mikkel Plagborg-Møller∗ This version: August 26, 2016. First version: October 26, 2015. Abstract: I propose to estimate structural impulse responses from macroeco- nomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Struc- tural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in appli- cations. Rapid simulation of the posterior of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle. Keywords: Bayesian inference, Hamiltonian Monte Carlo, impulse response function, news shock, nonfundamental, noninvertible, partial identification, structural vector autoregression, structural vector moving average, Whittle likelihood. 1 Introduction Since Sims(1980), Structural Vector Autoregression (SVAR) analysis has been the most popular method for estimating the impulse response functions (IRFs) of observed macro ∗Harvard University, email: [email protected]. I am grateful for comments from Isaiah An- drews, Regis Barnichon, Varanya Chaubey, Gabriel Chodorow-Reich, Peter Ganong, Ben Hébert, Christian Matthes, Pepe Montiel Olea, Frank Schorfheide, Elie Tamer, Harald Uhlig, and seminar participants at Cambridge, Chicago Booth, Columbia, Harvard Economics and Kennedy School, MIT, Penn State, Prince- ton, UCL, UPenn, and the 2015 DAEiNA meeting.
    [Show full text]
  • Package 'Beyondwhittle'
    Package ‘beyondWhittle’ July 12, 2019 Type Package Title Bayesian Spectral Inference for Stationary Time Series Version 1.1.1 Date 2019-07-11 Maintainer Alexander Meier <[email protected]> Description Implementations of Bayesian parametric, nonparametric and semiparametric proce- dures for univariate and multivariate time series. The package is based on the methods pre- sented in C. Kirch et al (2018) <doi:10.1214/18- BA1126> and A. Meier (2018) <https://opendata.uni- halle.de//handle/1981185920/13470>. It was supported by DFG grant KI 1443/3-1. License GPL (>= 3) Imports ltsa (>= 1.4.6), Rcpp (>= 0.12.5), MASS, MTS, forecast LinkingTo Rcpp, RcppArmadillo, BH RoxygenNote 6.1.1 NeedsCompilation yes Author Alexander Meier [aut, cre], Claudia Kirch [aut], Matthew C. Edwards [aut], Renate Meyer [aut] Repository CRAN Date/Publication 2019-07-11 22:00:01 UTC R topics documented: beyondWhittle-package . .2 fourier_freq . .3 gibbs_ar . .3 gibbs_np . .6 gibbs_npc . .8 gibbs_var . 11 gibbs_vnp . 13 1 2 beyondWhittle-package pacf_to_ar . 15 plot.gibbs_psd . 16 print.gibbs_psd . 17 psd_arma . 17 psd_varma . 18 rmvnorm . 19 scree_type_ar . 19 sim_varma . 20 summary.gibbs_psd . 21 Index 22 beyondWhittle-package Bayesian spectral inference for stationary time series Description Bayesian parametric, nonparametric and semiparametric procedures for spectral density inference of univariate and multivariate time series Details The package contains several methods (parametric, nonparametric and semiparametric) for Bayesian spectral density inference.
    [Show full text]
  • Quasi-Likelihood Inference for Modulated Non-Stationary Time Series
    Quasi-likelihood inference for modulated non-stationary time series Arthur P. Guillaumin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Statistical Science University College London March 1, 2018 2 I, Arthur P. Guillaumin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract In this thesis we propose a new class of non-stationary time series models and a quasi-likelihood inference method that is computationally efficient and consistent for that class of processes. A standard class of non-stationary processes is that of locally-stationary processes, where a smooth time-varying spectral representation extends the spectral representation of stationary time series. This allows us to apply stationary estimation methods when analysing slowly-varying non-stationary pro- cesses. However, stationary inference methods may lead to large biases for more rapidly-varying non-stationary processes. We present a class of such processes based on the framework of modulated processes. A modulated process is formed by pointwise multiplying a stationary process, called the latent process, by a sequence, called the modulation sequence. Our interest lies in estimating a parametric model for the latent stationary process from observing the modulated process in parallel with the modulation sequence. Very often exact likelihood is not computationally viable when analysing large time series datasets. The Whittle likelihood is a stan- dard quasi-likelihood for stationary time series. Our inference method adapts this function by specifying the expected periodogram of the modulated process for a given parameter vector of the latent time series model, and then fits this quantity to the sample periodogram.
    [Show full text]
  • Inference with the Whittle Likelihood: a Tractable Approach Using Estimating Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Inference with the Whittle likelihood: a tractable approach using estimating functions Joao Jesus and Richard E. Chandler Department of Statistical Science University College London, Gower Street, London WC1E 6BT, UK October 14, 2016 Abstract The theoretical properties of the Whittle likelihood have been studied extensively for many different types of process. In applications however, the utility of the approach is limited by the fact that the asymptotic sampling distribution of the estimator typically depends on third- and fourth-order properties of the process that may be difficult to obtain. In this paper, we show how the methodology can be embedded in the standard framework of estimating functions, which allows the asymptotic distribution to be estimated empirically without calculating higher- order spectra. We also demonstrate that some aspects of the inference, such as the calculation of confidence regions for the entire parameter vector, can be inaccurate but that a small adjustment, designed for application in situations where a mis- specified likelihood is used for inference, can lead to marked improvements. 1 Introduction Since its introduction by Whittle (1953) as a computationally efficient way to approxi- mate the likelihood of a stationary Gaussian process, the `Whittle' or `spectral' likelihood function has at times attracted considerable interest. In the mainstream of modern ap- plied time series analysis, it is no longer widely used: modern computing power, along with efficient algorithms for computing the exact likelihood of a Gaussian process (sum- marised, for example, in Chandler and Scott 2011, Section 5.1.5), mean that the use of such approximations is no longer necessary for `standard' models.
    [Show full text]
  • Gaussian Maximum Likelihood Estimation for ARMA Models II
    Gaussian Maximum Likelihood Estimation For ARMA Models II: Spatial Processes Qiwei Yao∗ Department of Statistics, London School of Economics, London, WC2A 2AE, UK Guanghua School of Management, Peking University, China Email: [email protected] Peter J. Brockwell Department of Statistics, Colorado State University Fort Collins, CO 80532, USA Email: [email protected] Summary This paper examines the Gaussian maximum likelihood estimator (GMLE) in the context of a general form of spatial autoregressive and moving average (ARMA) pro- cesses with finite second moment. The ARMA processes are supposed to be causal and invertible under the half-plane unilateral order (Whittle 1954), but not necessarily Gaussian. We show that the GMLE is consistent. Subject to a modification to confine the edge effect, it is also asymptotically distribution-free in the sense that the limit distribution is normal, unbiased and with a variance depending on the autocorrelation function only. This is an analogue of Hannan’s classic result for time series in the context of spatial processes; see Theorem 10.8.2 of Brockwell and Davis (1991). Keywords: ARMA spatial process, asymptotic normality, consistency, edge effect, Gaussian max- imum likelihood estimator, martingale-difference. Running title: Gaussian MLE for spatial ARMA processes 1 1. Introduction Since Whittle’s pioneering work (Whittle 1954) on stationary spatial processes, the frequency- domain methods which approximate a Gaussian likelihood by a function of a spectral density became popular, while the Gaussian likelihood function itself was regarded intractable in both theoretical exploration and practical implementation. Guyon (1982) and Dahlhaus and K¨unsch (1987) established the asymptotic normality for the modified Whittle’s maximum likelihood esti- mators for stationary spatial processes which are not necessarily Gaussian; the modifications were adopted to control the edge effect.
    [Show full text]