Global and Local Stationary Modelling in Finance: Theory and Empirical

Total Page:16

File Type:pdf, Size:1020Kb

Global and Local Stationary Modelling in Finance: Theory and Empirical Global and local stationary modelling in finance : theory and empirical evidence Dominique Guegan To cite this version: Dominique Guegan. Global and local stationary modelling in finance : theory and empirical evidence. 2007. halshs-00187875 HAL Id: halshs-00187875 https://halshs.archives-ouvertes.fr/halshs-00187875 Submitted on 15 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Global and Local stationary modelling in finance : Theory and empirical evidence Dominique GUEGAN 2007.53 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://ces.univ-paris1.fr/cesdp/CES-docs.htm ISSN : 1955-611X Global and Local stationary modelling in finance: Theory and empirical evidence Guégan D. ∗ April 8, 2007 Abstract In this paper we deal with the problem of non - stationarity encoun- tered in a lot of data sets coming from existence of multiple season- nalities, jumps, volatility, distorsion, aggregation, etc. We study the problem caused by these non stationarities on the estimation of the sample autocorrelation function and give several examples of mod- els for which spurious behaviors is created by this fact. It concerns Markov switching processes, Stopbreak models and SETAR processes. Then, new strategies are suggested to study locally these data sets. We propose first a test based on the k-th cumulants and mainly the construction of a meta-distribution based on copulas for the data set which will permit to take into account all the non-stationarities. This approach suggests that we can be able to do risk management for portfolio containing non stationary assets and also to obtain the dis- tribution function of some specific models. Keywords: Non-Stationarity - Distribution function - Copula - Long-memory - Switching - SETAR - StopBreak Models - Cumulants - Estimation. theory. JEL classification: C32, C51, G12 ∗E.N.S. Cachan, Département d’Economie et Gestion, Centre d’Economique de la Sor- bonne (CES), Antenne Cachan, UMR 7184, 61 Avenue du President Wilson, 94235, Cachan Cedex, France, e-mail : [email protected] 1 1 Introduction Adequate framework to study the behavior of stock returns, and more gen- erally asset prices, is important for several reasons. First, the nature of asset prices behavior is necessary to get robust forecasts. Second the knowledge of the probabilistic properties of these asset prices is fundamental to the for- mulation of the concept of risks: indeed the measurement of risks depends heavily on properties of the empirical distribution such as stationarity, long tailedness, finiteness of the second and higher order moments. Third, various tests for the empirical validity of financial models and the application of these models rely on the robustness of statistical tools which can be deficient in specific context. Fourth, several important pricing models for stock options and other similar financial instruments usually require explicit estimates of stock return variances. The usefulness of these models depends largely on the adequacy and the stationarity of almost the second order moments. Indeed, to model real data sets using classical stochastic processes imposes that the data sets verify almost the second order stationarity condition. This sta- tionarity condition concerns the unconditional moments of the process. It is in that context that most of the models developed from the sixties’ have been studied; We refer to the ARMA processes (Brockwell and Davis, 1988), the ARCH, GARCH and EGARCH models (Engle, 1982, Bollerslev, 1986, Nelson, 1990), the SETAR process (Lim and Tong, 1980 and Tong, 1990), the bilinear model (Granger and Andersen, 1978, Guégan, 1994), the EX- PAR model (Haggan and Ozaki, 1980), the long memory process (Granger and Joyeux, 1980, Hosking, 1981, Gray, Zang and Woodward, 1989, Beran, 1994, Giraitis and Leipus, 1995, Guégan, 2000), the Markov switching process (Hamilton, 1988). For all these models, we get an invertible causal solution under specific conditions on the parameters, then the forecast points and the forecast intervals are available. Thus, the stationarity assumption is the basis for a general asymptotic theory for identification, estimation and forecasting. It guarantees that the increase of the sample size leads to more and more information of the same kind which is basic for an asymptotic theory to make sense. Moreover, non-stationarity modelling has also a long tradition in economet- rics. This one is based on the conditional moments of the data generating process. It appears mainly in the heteroscedastic and volatility models, like the GARCH and related models, and stochastic volatility processes (Ghysels, Harvey and Renault (1997)). This non stationarity appears also in a different way with structural changes models like the Markov switching model (Hamil- 2 ton, 1988), the Stopbreak model (Diebold and Inoue, 2001, Breidt and Hsu, 2002, Granger and Hyung, 2004) and the SETAR model (Tong, 1990), for instance. It can also be observed for linear models with time varying coeffi- cients (Nicholls and Quinn, 1982, Tsay, 1987). Thus, using stationary unconditional moments suggest a global stationarity for the model, but using non-stationary unconditional or conditional mo- ments suggest that this global stationarity fails and that we only observe a local stationary behavior. The growing evidence of instability in the stochastic behavior of stocks, of exchange rates, of some economic data sets like growth rates for instance, characterized by volatility, explosions or jumps inside the variance or on the levels of the prices imposes to discuss the assumption of global stationar- ity and its consequence in modelling, particularly in forecasting and risk management strategy. There exist a voluminous literature concerning the modelling of stock returns, and most of the published research work relies on the stationary assumption that is embedded in almost conventional sta- tistical methods: it is assumed that the distributional shapes are invariant and the variance finite. Thus we can address several questions with respect to these remarks. 1. What kinds of non-stationarity affect the major financial and economic data sets? How can we detect them? 2. What is the impact of evidence of non stationarity on the statistics computed from the global non stationary data sets? 3. How can we analyze data sets in the non stationary global framework? Does the asymptotic theory work in non-stationary framework? 4. Can we use a local modelling to avoid a global non-stationarity? How to detect it? Based on the fact that we cannot expect market return variability to be a constant value over time, the conventional concept of risk cannot be defined on a stationary basis. Thus the purpose of studying the non constancy of market return variability will permit to gather better insights into the complex mechanism underlying the evolution of these returns in order to better forecast and to define a robust risk management strategy. These questions begin to be discussed in some papers in the economic lit- erature. For some of these questions, the answers are known, for others, 3 very few works exist, we refer for instance to Lobato and Savin, 1998, Engle and Smith, 1999, Granger and Terasvirta, 1999, Diebold and Inoue, 2001, Granger and Hyung, 2004, Mikosch and Starica, 2004. In this paper we discuss all these problems and we propose new strategies to detect non sta- tionarity based on the cumulants spectral density function and on copulas, and modellings to solve them in order to propose a new approach for risk measures. Several interesting topics in empirical finance awaiting future re- search are also discussed. In the next Section, we recall the notion of global stationarity and short and long memory behaviors. In Section three, we introduce the different types of non stationarities observed in real data sets and we examine what are the specific behaviors observed in presence of non stationarity on real data sets. In Section four, we study the asymptotic behavior of the sample ACF in presence of non stationarity. In Section 5, we introduce the notion of local stationarity. Section 6 is devoted to new results concerning the detection of local stationarity and the building of a kind of meta-distribution. This last approach permits to compute the empirical distribution function for a whole non-stationary sample using a local approach and also to give new possi- bilities to build the distribution function for specific models characterizing by certain non stationarities. Finally Section 7 concludes. In the different annexes, we found proof of the proposition 4.1 and some simulations that illustrate problems discussed all along the paper. 2 Some notations and recalls In order to find a model which characterizes a real data set, we use a theoret- ical framework assuming that the observations of any data set are dependent random variables obtained at different moments of time under stationarity and corresponding to the realization of a process (Yt)t. We first recall the notion of stationary stochastic process. A stochastic process is a sequence of random variables (Yt)t defined on a probability space (Ω, A,P ). Then ∀t fixed, Yt is a function Yt(.) on the space Ω, and ∀ω ∈ Ω fix, Y.(ω) is a function on Z. The functions (Y.(ω))ω∈Ω defined on Z are realizations of the process (Yt)t. A second order stochastic process 2 (Yt)t is such that, ∀t, EYt < ∞. For a second order stochastic process, the mean µt = EYt exists, ∀t, as the variance and the covariance.
Recommended publications
  • Tail Estimation of the Spectral Density Under Fixed-Domain Asymptotics
    TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Statistics 2011 ABSTRACT TAIL ESTIMATION OF THE SPECTRAL DENSITY UNDER FIXED-DOMAIN ASYMPTOTICS By Wei-Ying Wu For spatial statistics, two asymptotic approaches are usually considered: increasing domain asymptotics and fixed-domain asymptotics (or infill asymptotics). For increasing domain asymptotics, sampled data increase with the increasing spatial domain, while under infill asymptotics, data are observed on a fixed region with the distance between neighboring ob- servations tending to zero. The consistency and asymptotic results under these two asymp- totic frameworks can be quite different. For example, not all parameters are consistently estimated under infill asymptotics while consistency holds for those parameters under in- creasing asymptotics (Zhang 2004). For a stationary Gaussian random field on Rd with the spectral density f(λ) that satisfies f(λ) ∼ c jλj−θ as jλj ! 1, the parameters c and θ control the tail behavior of the spectral density where θ is related to the smoothness of random field and c can be used to determine the orthogonality of probability measures for a fixed θ. Specially, c corresponds to the microergodic parameter mentioned in Du et al. (2009) when Mat´erncovariance is assumed. Additionally, under infill asymptotics, the tail behavior of the spectral density dominates the performance of the prediction, and the equivalence of the probability measures. Based on those reasons, it is significant in statistics to estimate c and θ.
    [Show full text]
  • Statistica Sinica Preprint No: SS-2016-0112R1
    Statistica Sinica Preprint No: SS-2016-0112R1 Title Inference of Bivariate Long-memory Aggregate Time Series Manuscript ID SS-2016-0112R1 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202016.0112 Complete List of Authors Henghsiu Tsai Heiko Rachinger and Kung-Sik Chan Corresponding Author Henghsiu Tsai E-mail [email protected] Notice: Accepted version subject to English editing. Statistica Sinica: Newly accepted Paper (accepted version subject to English editing) Inference of Bivariate Long-memory Aggregate Time Series Henghsiu Tsai, Heiko Rachinger and Kung-Sik Chan Academia Sinica, University of Vienna and University of Iowa January 5, 2017 Abstract. Multivariate time-series data are increasingly collected, with the increas- ing deployment of affordable and sophisticated sensors. These multivariate time series are often of long memory, the inference of which can be rather complex. We consider the problem of modeling long-memory bivariate time series that are aggregates from an underlying long-memory continuous-time process. We show that with increasing aggre- gation, the resulting discrete-time process is approximately a linear transformation of two independent fractional Gaussian noises with the corresponding Hurst parameters equal to those of the underlying continuous-time processes. We also use simulations to confirm the good approximation of the limiting model to aggregate data from a continuous-time process. The theoretical and numerical results justify modeling long-memory bivari- ate aggregate time series by this limiting model. However, the model parametrization changes drastically in the case of identical Hurst parameters. We derive the likelihood ratio test for testing the equality of the two Hurst parameters, within the framework of Whittle likelihood, and the corresponding maximum likelihood estimators.
    [Show full text]
  • Approximate Likelihood for Large Irregularly Spaced Spatial Data
    Approximate likelihood for large irregularly spaced spatial data1 Montserrat Fuentes SUMMARY Likelihood approaches for large irregularly spaced spatial datasets are often very diffi- cult, if not infeasible, to use due to computational limitations. Even when we can assume normality, exact calculations of the likelihood for a Gaussian spatial process observed at n locations requires O(n3) operations. We present a version of Whittle’s approximation to the Gaussian log likelihood for spatial regular lattices with missing values and for irregularly spaced datasets. This method requires O(nlog2n) operations and does not involve calculat- ing determinants. We present simulations and theoretical results to show the benefits and the performance of the spatial likelihood approximation method presented here for spatial irregularly spaced datasets and lattices with missing values. 1 Introduction Statisticians are frequently involved in the spatial analysis of huge datasets. In this situation, calculating the likelihood function to estimate the covariance parameters or to obtain the predictive posterior density is very difficult due to computational limitations. Even if we 1M. Fuentes is an Associate Professor at the Statistics Department, North Carolina State University (NCSU), Raleigh, NC 27695-8203. Tel.:(919) 515-1921, Fax: (919) 515-1169, E-mail: [email protected]. This research was sponsored by a National Science Foundation grant DMS 0353029. Key words: covariance, Fourier transform, periodogram, spatial statistics, satellite data. 1 can assume normality, calculating the likelihood function involves O(N 3) operations, where N is the number of observations. However, if the observations are on a regular complete lattice, then it is possible to compute the likelihood function with fewer calculations using spectral methods (Whittle 1954, Guyon 1982, Dahlhaus and K¨usch, 1987, Stein 1995, 1999).
    [Show full text]
  • Risk and Statistics
    Risk and Statistics 2nd ISM-UUlm Joint Workshop October 8 – October 10, 2019 Villa Eberhardt Heidenheimer Straße 80 89075 Ulm Tuesday, October 8 8:00 - 8:45 Registration 8:45 - 9:00 Vicepresident Dieter Rautenbach – Welcome address 9:00 - 9:45 Satoshi Ito (ISM) – Computation of clinch and elimination numbers in league sports based on integer programming 9:45 – 10:30 An Chen (UUlm) – Innovative retirement plans 10:30 – 11:00 Coffee break 11:00 – 11:45 Shunichi Nomura (ISM) – Cluster-based discrimination of foreshocks for earthquake prediction 11:45 – 12:30 Mitja Stadje (UUlm) – On dynamic deviation measures and continuous- time portfolio optimization 12:30 – 14:30 Lunch 14:30 – 15:15 Toshikazu Kitano (Nagoya Institute of Technology) - Applications of bivariate generalized Pareto distribution and the threshold choice 15:15-16:00 Yuma Uehara (ISM) – Bootstrap method for misspecified stochastic differential equation models 16:00 – 16:30 Coffee break 16:30 – 17:15 Motonobu Kanagawa (Eurecom) – Convergence guarantees for adaptive Bayesian quadrature methods 17:15 – 18:00 Rene Schilling (TU Dresden) – On the Liouville property for Lévy generators 18:00 Get together (Rittersaal) Wednesday, October 9 9:00 – 9:45 Denis Belomestny (University of Duisburg-Essen) – Density deconvolution under general assumptions on the distribution of measurement errors 9:45 – 10:30 Teppei Ogihara (University of Tokyo) – Local asymptotic mixed normality for multi-dimensional integrated diffusion processes 10:30 – 11:00 Coffee break 11:00 – 11:45. Satoshi Kuriki (ISM) – Perturbation of the expected Minkowski functional and its applications 11:45 – 12:30 Robert Stelzer, Bennet Ströh (UUlm) – Weak dependence of mixed moving average processes and random fields with applications 12:30 – 14:30 Lunch 14:30 – 16:00 Poster session incl.
    [Show full text]
  • Collective Spectral Density Estimation and Clustering for Spatially
    Collective Spectral Density Estimation and Clustering for Spatially-Correlated Data Tianbo Chen1, Ying Sun1, Mehdi Maadooliat2 Abstract In this paper, we develop a method for estimating and clustering two-dimensional spectral density functions (2D-SDFs) for spatial data from multiple subregions. We use a common set of adaptive basis functions to explain the similarities among the 2D-SDFs in a low-dimensional space and estimate the basis coefficients by maximizing the Whittle likelihood with two penalties. We apply these penalties to impose the smoothness of the estimated 2D-SDFs and the spatial dependence of the spatially-correlated subregions. The proposed technique provides a score matrix, that is comprised of the estimated coefficients associated with the common set of basis functions repre- senting the 2D-SDFs. Instead of clustering the estimated SDFs directly, we propose to employ the score matrix for clustering purposes, taking advantage of its low-dimensional property. In a simulation study, we demonstrate that our proposed method outperforms other competing esti- mation procedures used for clustering. Finally, to validate the described clustering method, we apply the procedure to soil moisture data from the Mississippi basin to produce homogeneous spatial clusters. We produce animations to dynamically show the estimation procedure, includ- arXiv:2007.14085v1 [stat.ME] 28 Jul 2020 ing the estimated 2D-SDFs and the score matrix, which provide an intuitive illustration of the proposed method. Key Words: Dimension reduction; Penalized Whittle likelihood; Spatial data clustering; Spatial dependence; Two-dimensional spectral density functions 1King Abdullah University of Science and Technology (KAUST), Statistics Program, Thuwal 23955-6900, Saudi Arabia.
    [Show full text]
  • The De-Biased Whittle Likelihood
    Biometrika (2018), xx, x, pp. 1–16 Printed in Great Britain The de-biased Whittle likelihood BY ADAM M. SYKULSKI Data Science Institute / Department of Mathematics & Statistics, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K. [email protected] 5 SOFIA C. OLHEDE, ARTHUR P. GUILLAUMIN Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, U.K. [email protected] [email protected] JONATHAN M. LILLY AND JEFFREY J. EARLY 10 NorthWest Research Associates, 4118 148th Ave NE, Redmond, Washington 98052, U.S.A. [email protected] [email protected] SUMMARY The Whittle likelihood is a widely used and computationally efficient pseudo-likelihood. How- 15 ever, it is known to produce biased parameter estimates with finite sample sizes for large classes of models. We propose a method for de-biasing Whittle estimates for second-order stationary stochastic processes. The de-biased Whittle likelihood can be computed in the same O(n log n) operations as the standard Whittle approach. We demonstrate the superior performance of the method in simulation studies and in application to a large-scale oceanographic dataset, where 20 in both cases the de-biased approach reduces bias by up to two orders of magnitude, achieving estimates that are close to those of exact maximum likelihood, at a fraction of the computational cost. We prove that the method yields estimates that are consistent at an optimal convergence rate of n−1=2 for Gaussian, as well as certain classes of non-Gaussian or non-linear processes. This is established under weaker assumptions than standard theory, where the power spectral density is 25 not required to be continuous in frequency.
    [Show full text]
  • Bayesian Inference on Structural Impulse Response Functions
    Bayesian Inference on Structural Impulse Response Functions Mikkel Plagborg-Møller∗ This version: August 26, 2016. First version: October 26, 2015. Abstract: I propose to estimate structural impulse responses from macroeco- nomic time series by doing Bayesian inference on the Structural Vector Moving Average representation of the data. This approach has two advantages over Struc- tural Vector Autoregressions. First, it imposes prior information directly on the impulse responses in a flexible and transparent manner. Second, it can handle noninvertible impulse response functions, which are often encountered in appli- cations. Rapid simulation of the posterior of the impulse responses is possible using an algorithm that exploits the Whittle likelihood. The impulse responses are partially identified, and I derive the frequentist asymptotics of the Bayesian procedure to show which features of the prior information are updated by the data. The procedure is used to estimate the effects of technological news shocks on the U.S. business cycle. Keywords: Bayesian inference, Hamiltonian Monte Carlo, impulse response function, news shock, nonfundamental, noninvertible, partial identification, structural vector autoregression, structural vector moving average, Whittle likelihood. 1 Introduction Since Sims(1980), Structural Vector Autoregression (SVAR) analysis has been the most popular method for estimating the impulse response functions (IRFs) of observed macro ∗Harvard University, email: [email protected]. I am grateful for comments from Isaiah An- drews, Regis Barnichon, Varanya Chaubey, Gabriel Chodorow-Reich, Peter Ganong, Ben Hébert, Christian Matthes, Pepe Montiel Olea, Frank Schorfheide, Elie Tamer, Harald Uhlig, and seminar participants at Cambridge, Chicago Booth, Columbia, Harvard Economics and Kennedy School, MIT, Penn State, Prince- ton, UCL, UPenn, and the 2015 DAEiNA meeting.
    [Show full text]
  • Package 'Beyondwhittle'
    Package ‘beyondWhittle’ July 12, 2019 Type Package Title Bayesian Spectral Inference for Stationary Time Series Version 1.1.1 Date 2019-07-11 Maintainer Alexander Meier <[email protected]> Description Implementations of Bayesian parametric, nonparametric and semiparametric proce- dures for univariate and multivariate time series. The package is based on the methods pre- sented in C. Kirch et al (2018) <doi:10.1214/18- BA1126> and A. Meier (2018) <https://opendata.uni- halle.de//handle/1981185920/13470>. It was supported by DFG grant KI 1443/3-1. License GPL (>= 3) Imports ltsa (>= 1.4.6), Rcpp (>= 0.12.5), MASS, MTS, forecast LinkingTo Rcpp, RcppArmadillo, BH RoxygenNote 6.1.1 NeedsCompilation yes Author Alexander Meier [aut, cre], Claudia Kirch [aut], Matthew C. Edwards [aut], Renate Meyer [aut] Repository CRAN Date/Publication 2019-07-11 22:00:01 UTC R topics documented: beyondWhittle-package . .2 fourier_freq . .3 gibbs_ar . .3 gibbs_np . .6 gibbs_npc . .8 gibbs_var . 11 gibbs_vnp . 13 1 2 beyondWhittle-package pacf_to_ar . 15 plot.gibbs_psd . 16 print.gibbs_psd . 17 psd_arma . 17 psd_varma . 18 rmvnorm . 19 scree_type_ar . 19 sim_varma . 20 summary.gibbs_psd . 21 Index 22 beyondWhittle-package Bayesian spectral inference for stationary time series Description Bayesian parametric, nonparametric and semiparametric procedures for spectral density inference of univariate and multivariate time series Details The package contains several methods (parametric, nonparametric and semiparametric) for Bayesian spectral density inference.
    [Show full text]
  • Quasi-Likelihood Inference for Modulated Non-Stationary Time Series
    Quasi-likelihood inference for modulated non-stationary time series Arthur P. Guillaumin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Statistical Science University College London March 1, 2018 2 I, Arthur P. Guillaumin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract In this thesis we propose a new class of non-stationary time series models and a quasi-likelihood inference method that is computationally efficient and consistent for that class of processes. A standard class of non-stationary processes is that of locally-stationary processes, where a smooth time-varying spectral representation extends the spectral representation of stationary time series. This allows us to apply stationary estimation methods when analysing slowly-varying non-stationary pro- cesses. However, stationary inference methods may lead to large biases for more rapidly-varying non-stationary processes. We present a class of such processes based on the framework of modulated processes. A modulated process is formed by pointwise multiplying a stationary process, called the latent process, by a sequence, called the modulation sequence. Our interest lies in estimating a parametric model for the latent stationary process from observing the modulated process in parallel with the modulation sequence. Very often exact likelihood is not computationally viable when analysing large time series datasets. The Whittle likelihood is a stan- dard quasi-likelihood for stationary time series. Our inference method adapts this function by specifying the expected periodogram of the modulated process for a given parameter vector of the latent time series model, and then fits this quantity to the sample periodogram.
    [Show full text]
  • Inference with the Whittle Likelihood: a Tractable Approach Using Estimating Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Inference with the Whittle likelihood: a tractable approach using estimating functions Joao Jesus and Richard E. Chandler Department of Statistical Science University College London, Gower Street, London WC1E 6BT, UK October 14, 2016 Abstract The theoretical properties of the Whittle likelihood have been studied extensively for many different types of process. In applications however, the utility of the approach is limited by the fact that the asymptotic sampling distribution of the estimator typically depends on third- and fourth-order properties of the process that may be difficult to obtain. In this paper, we show how the methodology can be embedded in the standard framework of estimating functions, which allows the asymptotic distribution to be estimated empirically without calculating higher- order spectra. We also demonstrate that some aspects of the inference, such as the calculation of confidence regions for the entire parameter vector, can be inaccurate but that a small adjustment, designed for application in situations where a mis- specified likelihood is used for inference, can lead to marked improvements. 1 Introduction Since its introduction by Whittle (1953) as a computationally efficient way to approxi- mate the likelihood of a stationary Gaussian process, the `Whittle' or `spectral' likelihood function has at times attracted considerable interest. In the mainstream of modern ap- plied time series analysis, it is no longer widely used: modern computing power, along with efficient algorithms for computing the exact likelihood of a Gaussian process (sum- marised, for example, in Chandler and Scott 2011, Section 5.1.5), mean that the use of such approximations is no longer necessary for `standard' models.
    [Show full text]
  • Gaussian Maximum Likelihood Estimation for ARMA Models II
    Gaussian Maximum Likelihood Estimation For ARMA Models II: Spatial Processes Qiwei Yao∗ Department of Statistics, London School of Economics, London, WC2A 2AE, UK Guanghua School of Management, Peking University, China Email: [email protected] Peter J. Brockwell Department of Statistics, Colorado State University Fort Collins, CO 80532, USA Email: [email protected] Summary This paper examines the Gaussian maximum likelihood estimator (GMLE) in the context of a general form of spatial autoregressive and moving average (ARMA) pro- cesses with finite second moment. The ARMA processes are supposed to be causal and invertible under the half-plane unilateral order (Whittle 1954), but not necessarily Gaussian. We show that the GMLE is consistent. Subject to a modification to confine the edge effect, it is also asymptotically distribution-free in the sense that the limit distribution is normal, unbiased and with a variance depending on the autocorrelation function only. This is an analogue of Hannan’s classic result for time series in the context of spatial processes; see Theorem 10.8.2 of Brockwell and Davis (1991). Keywords: ARMA spatial process, asymptotic normality, consistency, edge effect, Gaussian max- imum likelihood estimator, martingale-difference. Running title: Gaussian MLE for spatial ARMA processes 1 1. Introduction Since Whittle’s pioneering work (Whittle 1954) on stationary spatial processes, the frequency- domain methods which approximate a Gaussian likelihood by a function of a spectral density became popular, while the Gaussian likelihood function itself was regarded intractable in both theoretical exploration and practical implementation. Guyon (1982) and Dahlhaus and K¨unsch (1987) established the asymptotic normality for the modified Whittle’s maximum likelihood esti- mators for stationary spatial processes which are not necessarily Gaussian; the modifications were adopted to control the edge effect.
    [Show full text]
  • Frequency-Domain Identification of Continuous-Time ARMA Models
    Frequency-Domain Identi¯cation of Continuous-Time ARMA Models from Non-Uniformly Sampled Data Jonas Gillberg, Lennart Ljung Division of Automatic Control Department of Electrical Engineering LinkÄopingsuniversitet, SE-581 83 LinkÄoping,Sweden WWW: http://www.control.isy.liu.se E-mail: [email protected], [email protected] 5th November 2004 OMATIC CONTR AUT OL CO S MM TEM UNICATION SYS LINKÖPING Report no.: LiTH-ISY-R-2693 Submitted to 14th IFAC Symposium on System Identi¯cation, SYSID-2006 Technical reports from the Control & Communication group in LinkÄopingare available at http://www.control.isy.liu.se/publications. Abstract This paper treats direct identi¯cation of continuous-time autoregressive moving average (CARMA) time-series models. The main result is a method for esti- mating the continuous-time power spectral density from non-uniformly sampled data. It is based on the interpolation (smoothing) using the Kalman ¯lter. A deeper analysis is also carried out for the case of uniformly sampled data. This analysis provides a basis for proceeding with the non-uniform case. Numerical examples illustrating the performance of the method are also provided both, for spectral and subsequent parameter estimation. Keywords: Continuous-time systems; Parameter estimation; Continuous- time ARMA; CARMA; continuous-time noise model; Whittle likelihood estima- tor; Non-uniform sampling; Irregular sampling; Non-equidistant sampling; Frequency-Domain Identi¯cation of Continuous-Time ARMA Models from Non-Uniformly Sampled Data Jonas Gillberg, Lennart Ljung 2005-09-05 Abstract This paper treats direct identi¯cation of continuous-time autoregres- sive moving average (CARMA) time-series models. The main result is a method for estimating the continuous-time power spectral density from non-uniformly sampled data.
    [Show full text]