Overview of Green Roof (= GR) Studies Involving Wild Bee Species Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Green Roof (= GR) Studies Involving Wild Bee Species Assessment Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Table S1: Overview of green roof (= GR) studies involving wild bee species assessment Location Time Roof type Survey Species # species Research Reference span method level ID Question(s) (Y/N) European Studies Baden- 1990 - “Pflegeloses Pan traps Y 19 Green roofs as (Riedmiller Wuerttemberg, 1992 Pflanzendach” secondary habitat 1991; Germany experimental Schneider & extensive roof Riedmiller (only one layer, 1992; no drainage) Riedmiller & Schneider 1993) Berlin (7 roofs) April- Green roofs of Pan traps Y (list 51 Influence of the (Köhler and September different ages not number of plant 2014) Neubrandenburg 2013 (n=12) provided) species on the (5 roofs), number of bee Germany species Bingen, July- Extensive GR Observation N N/A Comparison of (Hietel 2016 Germany September (n=5) and gravel insect abundancy, summarizing 2014 and roofs (n=4) density/m² and information June- diversity from Kaiser August 2014; 2015 Kuhlmann 2015) 1 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Böblingen/ mainly Extensive to Netting and Y 49 Assessment of (Mann 1994) Sindelfingen, May- intensive GR hand the arthropod Germany August (n=4 capturing spectrum on 1992 (two days differently each, 1-2h) planted GR Böblingen, Extensive (n=4) Pan traps Y (list N/A Faunistic (Mann Germany and and intensive and Netting not assessment on 1996a, Linz, Austria (n=3) GR provided) different roof 1996b) types Basel, Luzern, 2004 - Extensive GR Pan traps Y 77 Wild bees on (Brenneisen St Gallen, 2005 (n=18) and extensive GRs; 2005) Zurich, observation no comparison to Switzerland ground-level habitats (reference samples lost due to disturbance) St Gallen, 2011 - GR (n=8), Observation, Y 44 Feasibility of (Brenneisen Tessin, Vallis, 2013 spontaneous GR Netting nesting aids for et al. 2014, Switzerland (n=1), non-GR (max 4x per ground-nesting summarizing (n=3) year, 30 min species on GRs information each) from Kälin 2005; Kessler 2010; Käppeli 2010; Zehnder 2011) 2 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Hannover, June-July GR (n=10): Netting, 1x Y 28 Wild bees and (Witt 2016) Germany 2015 extensive Sedum- June and 1x wasps on GRs roofs (n=3), some July shrubs (n=2), intensive roofs London, UK Summer- GR (Sedum, n=3) Pan traps Y 22 Invertebrate (Kadas Autumn and conservation and 2006) 2004 brown/biodiverse habitat roofs (n=2) mitigation; Comparison of green (Sedum) roofs, brown/biodiverse roofs and brownfields London, UK N/A Extensive GR Suction Y N/A Invertebrate (Jones 2002) (n=8) sampler 9 survey hymenopterans Northern France 11 April - Moss/Sedum, Hand- Y 18 spider, true bug, (Madre et al. 7 June herbaceous layer sampling beetle and 2013) 2011 and shrubs (roofs with pill hymenopteran (n=115) bottles abundance and species richness Stuttgart, June-July Intensive (n=1) Pan traps N 4 Height limitation (Mann 2005) Wuerzburg, 2005 and extensive of invertebrates Germany (n=2) GR on skyscrapers 3 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Vienna, Austria March – Intensive and Netting Y 91 Species (Kratschmer September extensive GR composition and 2015) 2014 (n=9) abundances on GR, influence of vegetation and surrounding area Zurich, May - Extensive GR Pan traps, Y (list 126 Habitat (Braaker et Switzerland September (n=40) non- not connectivity by al. 2014, 2010 directional provided) GR for taxa of 2017) traps different mobility North American Studies Chicago, US June – GR dominated by 3x 15 min Y 18 Comparison of (Tonietto et October native plants observation, GR with tallgrass al. 2011) 2008 (n=2) or Sedum netting, prairie and city- (n=4) pan traps park green spaces Chicago, US Three N/A (n=3) Pan traps N N/A Pollen limitation (Ksiazek et month on GR compared al. 2012) to ground-level sites Chicago, US 2 years Intensively Pan traps Y 26 Species (Ksiazek et maintained to composition on al. 2014) extensive roofs GRs (n=7) Halifax, Nova May – Established (>8) Pan traps N (only Comparison of (MacIvor & Scotia, US October intensive roofs (> morpho- GR and ground- Lundholm 2009 30 cm growth species) level habitats 2011) medium) 4 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Halifax, Nova June- Native planted Netting Y 24 Comparison of (Walker Scotia, US August GR (n=2) green roof, urban 2016) 2014 and coastal barrens habitats Michigan, US June – Sedum GR (n=2) Netting Y 1 Arthropod survey (O’Brien, July 2010 of Michigan Swanson, & Monsma, 2012) Toronto, Canada 2004 – Actively seeded Pan traps Y 79 Diversity and (Colla et al. 2006 (n=1) and abundance of 2009) passively seeded bees 0n GR in (n=1) GR comparison to ground-level sites Toronto, Canada 5 days in Green Roof Netting Y 17 Pollen analysis of (MacIvor et June and Innovation urban bees al. 2015) July Testing Lab visiting Sedum (University of on green roofs Toronto) Toronto, Canada 2011 - Vegetated and Trap nests Y 11 Nesting activity (MacIvor, 2013 non-vegetated of bees on GR 2016) roofs (n=29) depending on building height Upper Midwest July - Extensive (n=1) Netting N 59 morpho- Rapid (Coffman & Great lakes (MI, August and intensive species of biodiversity Waite 2011) OH), US 2004 (n=1) roof insects assessment from presence-absence and relative abundance data 5 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Other studies Chiba City, May- 150 m² biotope Observation Y 3 Plant (Nagase & Japan November roof, 8 years (7 x 3h), development and Nomura 2010 netting, pan invertebrate 2014) traps colonization after 8 years 1 2 References 3 Braaker, S., Ghazoul, J., Obrist, M.K., Moretti, M. (2014) Habitat connectivity shapes urban arthropod communities: the key 4 role of green roofs. Ecology 95, 1010–1021. 5 Braaker, S., Obrist, M.K., Ghazoul, J., Moretti, M. (2017) Habitat connectivity and local conditions shape taxonomic and 6 functional diversity of arthropods on green roofs. Journal of Animal Ecology 86: 521–531. 7 Brenneisen, S. (2005) The natural roof (NADA). Research project report of the use of extensive green roofs by wild bees. 8 University of Wädenswil, Wädenswil, Switzerland. 9 Brenneisen, S., Käppeli, S., Schneider, R. (2014) Förderung gefährdeter Wildbienen auf Flachdächern - Forschungsprojekt im 10 Mandat für Pro Natura. https://www.zhaw.ch/no_cache/en/research/people-publications-projects/detail-view- 11 project/projekt/1835/ (accessed April 10, 2017). 12 Coffman, R.R., Waite, T. (2011) Vegetated roofs as reconciled habitats: rapid assays beyond mere species counts. Urban 13 Habitats 6 (electronic journal). http://www.urbanhabitats.org/v06n01/vegetatedroofs_full.html 14 Colla, S.R., Willis, E., Packer, L. (2009) Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? Cities and 15 the Environment 2(4), 1–12. 16 Hietel, E. (2016) Biodiversität begrünter Dächer. Ergebnisse eines Forschungsprojektes der Forschungsinitiative RLP. Pages 17 13–16 14. Internationales FBB-Gründachsymposium 2016 - Tagungsband. Ditzingen, Germany. 18 Jones, R.A. (2002) Tecticolous invertebrates: a preliminary investigation of the invertebrate fauna on green roofs in urban 19 London. English Nature, London. 20 Kadas, G. (2006) Rare invertebrates colonizing green roofs in London. Urban Habitats 4, 66–86. 21 Kaiser, C. (2014) Untersuchungen zu den Auswirkungen der extensiven Dachbegrünung auf lokale Biodiversität und 22 Mikroklima. Bachelorarbeit. FH Bingen, Bingen, Germany. 23 6 Hofmann, M., and S. S. Renner. Bee species recorded between 1992 and 2017 from green roofs in Asia, Europe, and North America, with key characteristics and open research questions. Apidologie. Online supporting material, Tables S1 and S2 Kälin, M. (2005) Wildbienen auf begrünten Dachflächen – Substrate und ihre Auswirkungen auf die Wildbienenfauna. 24 Semesterarbeit. Züricher Hochschule für Angewandte Wissenschaften ZHAW, Wädenswil, Switzerland. 25 Käppeli, S. (2010) Wildbienen auf begrünten Dächern – Fördermöglichkeiten für gefährdete Arten? Semesterarbeit. Züricher 26 Hochschule für Angewandte Wissenschaften ZHAW, Wädenswil, Switzerland. 27 Kessler, C. (2010) Wildbienen auf begrünten Dächern – Fördermöglichkeiten für gefährdete Arten? Semesterarbeit. Züricher 28 Hochschule für Angewandte Wissenschaften ZHAW, Wädenswil, Switzerland. 29 Ksiazek, K., Fant, J., Skogen, K. (2012) An assessment of pollen limitation on Chicago green roofs. Landscape and Urban 30 Planning 107, 401–408. 31 Ksiazek, K., Tonietto, R., Ascher, J.S. (2014) Ten bee species new to green roofs in the Chicago area. The Michigan 32 Entomological Society 47, 87–92. 33 Köhler, M. (2014) Untersuchungen zur Biodiversität begrünter Dächer. Pages 13–16 12. Internationales FBB- 34 Gründachsymposium 2014, Tagungsband. Ditzingen, Germany. 35 Kratschmer, S.A. (2015) Summen auf den Dächern Wiens. Masterarbeit. Universität für Bodenkultur, Vienna, Austria. 36 Kuhlmann, M. (2015) Erfassung der Auswirkungen extensiver Dachbegrünung auf die lokale Abundanz und Vielfalt 37 blütenbestäubender Insekten. Bachelorarbeit. FH Bingen, Germany. 38 MacIvor, J.S. (2016) Building height matters: nesting activity of bees and wasps on vegetated roofs. Israel Journal of Ecology 39 & Evolution 62, 88–96.
Recommended publications
  • UNIVERSITY of READING Delivering Biodiversity and Pollination Services on Farmland
    UNIVERSITY OF READING Delivering biodiversity and pollination services on farmland: a comparison of three wildlife- friendly farming schemes Thesis submitted for the degree of Doctor of Philosophy Centre for Agri-Environmental Research School of Agriculture, Policy and Development Chloe J. Hardman June 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Chloe Hardman i Abstract Gains in food production through agricultural intensification have come at an environmental cost, including reductions in habitat diversity, species diversity and some ecosystem services. Wildlife- friendly farming schemes aim to mitigate the negative impacts of agricultural intensification. In this study, we compared the effectiveness of three schemes using four matched triplets of farms in southern England. The schemes were: i) a baseline of Entry Level Stewardship (ELS: a flexible widespread government scheme, ii) organic agriculture and iii) Conservation Grade (CG: a prescriptive, non-organic, biodiversity-focused scheme). We examined how effective the schemes were in supporting habitat diversity, species diversity, floral resources, pollinators and pollination services. Farms in CG and organic schemes supported higher habitat diversity than farms only in ELS. Plant and butterfly species richness were significantly higher on organic farms and butterfly species richness was marginally higher on CG farms compared to farms in ELS. The species richness of plants, butterflies, solitary bees and birds in winter was significantly correlated with local habitat diversity. Organic farms supported more evenly distributed floral resources and higher nectar densities compared to farms in CG or ELS. Compared to maximum estimates of pollen demand from six bee species, only organic farms supplied sufficient pollen in late summer.
    [Show full text]
  • The Chemical Ecology and Evolution of Bee–Flower Interactions: a Review and Perspectives1
    668 REVIEW / SYNTHE` SE The chemical ecology and evolution of bee–flower interactions: a review and perspectives1 S. Do¨ tterl and N.J. Vereecken Abstract: Bees and angiosperms have shared a long and intertwined evolutionary history and their interactions have re- sulted in remarkable adaptations. Yet, at a time when the ‘‘pollination crisis’’ is of major concern as natural populations of both wild and honey bees (Apis mellifera L., 1758) face alarming decline rates at a worldwide scale, there are important gaps in our understanding of the ecology and evolution of bee–flower interactions. In this review, we summarize and dis- cuss the current knowledge about the role of floral chemistry versus other communication channels in bee-pollinated flow- ering plants, both at the macro- and micro-evolutionary levels, and across the specialization–generalization gradient. The available data illustrate that floral scents and floral chemistry have been largely overlooked in bee–flower interactions, and that pollination studies integrating these components along with pollinator behaviour in a phylogenetic context will help gain considerable insights into the sensory ecology and the evolution of bees and their associated flowering plants. Re´sume´ : Les abeilles et les angiospermes partagent une grande partie de leur histoire e´volutive, et leurs interactions ont produit de remarquables exemples d’adaptations mutuelles. Cependant, a` une e´poque ou` la « crise de la pollinisation » de- vient une pre´occupation majeure et ou` les populations d’abeilles sauvages et mellife`res (Apis mellifera L., 1758) font face a` des de´clins massifs a` l’e´chelle mondiale, notre compre´hension de l’e´cologie et de l’e´volution des relations abeilles- plantes demeure fragmentaire.
    [Show full text]
  • Review of the Diet and Micro-Habitat Values for Wildlife and the Agronomic Potential of Selected Grassland Plant Species
    Report Number 697 Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant species English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team [email protected] Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A.
    [Show full text]
  • A Trait-Based Approach Laura Roquer Beni Phd Thesis 2020
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Pollinator communities and pollination services in apple orchards: a trait-based approach Laura Roquer Beni PhD Thesis 2020 Pollinator communities and pollination services in apple orchards: a trait-based approach Tesi doctoral Laura Roquer Beni per optar al grau de doctora Directors: Dr. Jordi Bosch i Dr. Anselm Rodrigo Programa de Doctorat en Ecologia Terrestre Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Universitat de Autònoma de Barcelona Juliol 2020 Il·lustració de la portada: Gala Pont @gala_pont Al meu pare, a la meva mare, a la meva germana i al meu germà Acknowledgements Se’m fa impossible resumir tot el que han significat per mi aquests anys de doctorat. Les qui em coneixeu més sabeu que han sigut anys de transformació, de reptes, d’aprendre a prioritzar sense deixar de cuidar allò que és important. Han sigut anys d’equilibris no sempre fàcils però molt gratificants. Heu sigut moltes les persones que m’heu acompanyat, d’una manera o altra, en el transcurs d’aquest projecte de creixement vital i acadèmic, i totes i cadascuna de vosaltres, formeu part del resultat final.
    [Show full text]
  • Biological Control and Pollination in Cider Apple Orchards: a Socio-Ecological
    Departamento de Biología de Organismos y Sistemas Programa de Doctorado: “Biogeociencias” Línea de investigación: Ecología y Biodiversidad Biological Control and Pollination in Cider Apple Orchards: a Socio-ecological Approach A thesis submitted by Rodrigo Martínez Sastre Under the supervision of Dr. Marcos Miñarro and Dr. Daniel García Oviedo 2020 RECOMMENDED CITATION: Martínez-Sastre, R. (2020). Biological control and pollination in cider apple orchards: a socio-ecological approach. PhD Thesis. University of Oviedo (Oviedo, Asturias). Spain RESUMEN DEL CONTENIDO DE TESIS DOCTORAL 1.- Título de la Tesis Español/Otro Idioma: Control biológico y Inglés: Biological control and pollination in polinización en plantaciones de manzana de cider-apple orchards: a socio-ecological sidra: una aproximación socio-ecológica approach. 2.- Autor Nombre: RODRIGO MARTÍNEZ SASTRE DNI/Pasaporte/NIE: 53474767C Programa de Doctorado: BIOGEOCIENCIAS Órgano responsable: DEPARTAMENTO DE BIOLOGÍA DE ORGANISMOS Y SISTEMAS RESUMEN (en español) La expansión agrícola y su intensificación son unas de las principales causas del deterioro medio ambiental y de la pérdida de biodiversidad en todo el mundo. Aunque suene contradictorio, esta tendencia actual pone en peligro el suministro futuro de alimentos a escala global. Sin embargo, una agricultura rentable que haga compatible la seguridad alimentaria con la conservación de la naturaleza es posible. En 010 (Reg.2018) 010 - los últimos años, muchos esfuerzos se han destinado a detener los daños generados por la agricultura y hacerla más sostenible. Lamentablemente, queda mucho camino por recorrer. La biodiversidad, asociada VOA - al suministro de servicios ecosistémicos, puede aportar diversos beneficios al rendimiento de los cultivos. MAT - Sin embargo, para asentar dicha biodiversidad es necesario cumplir ciertas condiciones favorables dentro FOR y cerca del cultivo.
    [Show full text]
  • Entertainment-Education in Science Education Available on Mobile Devices Interactive Tasks Allow You to Quickly Verify the Acquired Knowledge
    Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska 1 2 Entertainment-education in science education the monograph edited by Grzegorz Karwasz & Małgorzata Nodzyńska TORUŃ 2017 3 The monograph edited by: Grzegorz Karwasz & Małgorzata Nodzyńska Rewievers: Cover: Ewelina Kobylańska ISBN .......... 4 Introduction Jan Amos Komensky in „Great Didactics” (Amsterdam, 1657) defined didactics not as a mere process of teaching, but as teaching efficient, lasting and pleasant. He wrote (p. 131) “The school itself should be a pleasant place, and attractive to the eye both within and without. […] If this is done, boys will, in all probability, go to school with as much pleasure as to fairs, where they always hope to see and hear something new.” Further (p. 167) Komensky added: “The desire to know and to learn should be excited in boys in every possible manner.” The idea of linking the fun with didactics finds many followers, expressed also in tittles of activities like “Science is Fun” or “Physics is Fun”. In (Karwasz, Kruk, 2012) we defined three complementary aspects of any bit of information (an exhibition object, a film, a lecture): entertainment (“ludico” in Italian), didactics, and science. The first aspect gives an impression to a student/ visitor/ listener: “how funny it is!”. The didactical aspect induces: “How simple it is!” And the aspect of scientific curiosity induces in best students a question: “How complex it is!” These three functions add-up like three basic colors to give a full spectrum of enlightenment. The entertainment function can be performed in different forms – school, extra-school, complementary to school.
    [Show full text]
  • Bumble Bees of the Susa Valley (Hymenoptera Apidae)
    Bulletin of Insectology 63 (1): 137-152, 2010 ISSN 1721-8861 Bumble bees of the Susa Valley (Hymenoptera Apidae) Aulo MANINO, Augusto PATETTA, Giulia BOGLIETTI, Marco PORPORATO Di.Va.P.R.A. - Entomologia e Zoologia applicate all’Ambiente “Carlo Vidano”, Università di Torino, Grugliasco, Italy Abstract A survey of bumble bees (Bombus Latreille) of the Susa Valley was conducted at 124 locations between 340 and 3,130 m a.s.l. representative of the whole territory, which lies within the Cottian Central Alps, the Northern Cottian Alps, and the South-eastern Graian Alps. Altogether 1,102 specimens were collected and determined (180 queens, 227 males, and 695 workers) belonging to 30 species - two of which are represented by two subspecies - which account for 70% of those known in Italy, demonstrating the particular value of the area examined with regard to environmental quality and biodiversity. Bombus soroeensis (F.), Bombus me- somelas Gerstaecker, Bombus ruderarius (Mueller), Bombus monticola Smith, Bombus pratorum (L.), Bombus lucorum (L.), Bombus terrestris (L.), and Bombus lapidarius (L.) can be considered predominant, each one representing more than 5% of the collected specimens, 12 species are rather common (1-5% of specimens) and the remaining nine rare (less than 1%). A list of col- lected specimens with collection localities and dates is provided. To illustrate more clearly the altitudinal distribution of the dif- ferent species, the capture locations were grouped by altitude. 83.5% of the samples is also provided with data on the plant on which they were collected, comprising a total of 52 plant genera within 20 plant families.
    [Show full text]
  • Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
    sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes.
    [Show full text]
  • Bee-Plant Networks: Structure, Dynamics and the Metacommunity Concept
    Ber. d. Reinh.-Tüxen-Ges. 28, 23-40. Hannover 2016 Bee-plant networks: structure, dynamics and the metacommunity concept – Anselm Kratochwil und Sabrina Krausch, Osnabrück – Abstract Wild bees play an important role within pollinator-plant webs. The structure of such net- works is influenced by the regional species pool. After special filtering processes an actual pool will be established. According to the results of model studies these processes can be elu- cidated, especially for dry sandy grassland habitats. After restoration of specific plant com- munities (which had been developed mainly by inoculation of plant material) in a sandy area which was not or hardly populated by bees before the colonization process of bees proceeded very quickly. Foraging and nesting resources are triggering the bee species composition. Dis- persal and genetic bottlenecks seem to play a minor role. Functional aspects (e.g. number of generalists, specialists and cleptoparasites; body-size distributions) of the bee communities show that ecosystem stabilizing factors may be restored rapidly. Higher wild-bee diversity and higher numbers of specialized species were found at drier plots, e.g. communities of Koelerio-Corynephoretea and Festuco-Brometea. Bee-plant webs are highly complex systems and combine elements of nestedness, modularization and gradients. Beside structural com- plexity bee-plant networks can be characterized as dynamic systems. This is shown by using the metacommunity concept. Zusammenfassung: Wildbienen-Pflanzenarten-Netzwerke: Struktur, Dynamik und das Metacommunity-Konzept. Wildbienen spielen eine wichtige Rolle innerhalb von Bestäuber-Pflanzen-Netzwerken. Ihre Struktur wird vom jeweiligen regionalen Artenpool bestimmt. Nach spezifischen Filter- prozessen bildet sich ein aktueller Artenpool.
    [Show full text]
  • Hymenoptera: Aculeata Part 1 – Bees
    SCOTTISH INVERTEBRATE SPECIES KNOWLEDGE DOSSIER Hymenoptera: Aculeata Part 1 – Bees A. NUMBER OF SPECIES IN UK: 318 B. NUMBER OF SPECIES IN SCOTLAND: 110 (4 thought to be extinct, 2 may be found – insufficient data) C. EXPERT CONTACTS Please contact [email protected] for details. D. SPECIES OF CONSERVATION CONCERN Listed species UK Biodiversity Action Plan Species known to occur in Scotland (the current list was published in August 2007): Andrena tarsata Tormentil mining bee Bombus distinguendus Great yellow bumblebee Bombus muscorum Moss (Large) carder bumblebee Bombus ruderarius Red-shanked (Red-tailed) carder bumblebee Colletes floralis Northern colletes Osmia inermis a mason bee Osmia parietina a mason bee Osmia uncinata a mason bee Bombus distinguendus is also listed under the Species Action Framework of Scottish Natural Heritage, launched in 2007 (Category 1: Species for Conservation Action). 1 Other species The Scottish Biodiversity List was published in 2005 and lists the additional species (arranged below by sub-family): Andreninae Andrena cineraria Andrena helvola Andrena marginata Andrena nitida 1 Andrena ruficrus Anthophorinae Anthidium maniculatum Anthophora furcata Epeolus variegatus Nomada fabriciana Nomada leucophthalma Nomada obtusifrons Nomada robertjeotiana Sphecodes gibbus Apinae Bombus monticola Colletinae Colletes daviesanus Colletes fodiens Hylaeus brevicornis Halictinae Lasioglossum fulvicorne Lasioglossum smeathmanellum Lasioglossum villosulum Megachillinae Osmia aurulenta Osmia caruelescens Osmia rufa Stelis
    [Show full text]
  • Diversity of Pollinator Communities in Eastern Fennoscandia and Eastern Baltics Results from Pilot Monitoring with Yellow Traps in 1997 - 1998
    1 The Ei nnish Envi ron ment 44 NATURE AND NATURAL RESOURCES Guy Söderman Diversity of pollinator communities in Eastern Fennoscandia and Eastern Baltics Results from pilot morntorrng with Yellow traps in 1997 - 1998 1 / •--1 4 -- . Ö . O4 FINNISH ENVIRONMENT INSTITUTE The Finnish Environment 355 Diversity of pollinator communities in Eastern Fennoscandia and Eastern Baltics Results from pilot monitoring with Yellow traps in 1997 - 1998 HELSINKI 1999 . .. .. .. .. ... ...... .. .. FINNISH ENVIRONMENT INSTITUTE ISBN 952-I 1-0579-8 ISSN 1238-73 12 Cover phota: Reima Leinonen (Bombus Iucorum) Maps: Estonian Envimnment lnformation Centre Makeup: Pikseri]ulkaisupalvelut Oy Edita Ab Helsinki 1999 0 The Finnish Environment 355 Contents ...... 1 Introduction . ...... 5 2 i1ethods and t.,Iaterial . 7 3 Groups, Ecology and Behaviour ofPollinators 9 4 Threatened Species 1 1 5 Results frorn Conparative Tests 12 6 Species Composition, Distribution and Abundance 16 6.1 Social Bees (Apidae) 16 6.2 Solitary Bees (Apoidea, other families) 28 6.3 Social Wasps (Vespfdae) 30 6.4 Solitary Wasps (Eumenidae) 32 6.5 Hoverfties (Syrphfdae) 33 6.6 Other Groups 37 7 Relation between Captures and Natural Fauna 39 7.1 Within-Species Relations 39 7.2 Between-Spedes Relatfons 39 8 Diversity andAssociated Features of the Fauna 42 8.1 Quantitative Aspects of Pollfnator Diversfty 42 8.2 Qualftative Aspects of Pollinator Diversity 45 8.3 1ffects of Land Use 47 9 Discussion and Conclusions 49 9.1 Yellow-trapping as a Monitoring Technfque 49 9.2 Changes in the fauna and Species Abundancy 50 10 Acknoi.vledgeiiients 5 1 1 1 Literature 52 Ilnnexes 55 TheFinnshEnvironment355 0 0 .
    [Show full text]
  • Miranda S Bane Thesis 2019.PDF
    University of Bath PHD Bumblebee foraging patterns: plant-pollinator network dynamics and robustness Bane, Miranda Award date: 2019 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Bumblebee foraging patterns: plant-pollinator network dynamics and robustness Miranda Sophie Bane A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Physics December 2018 1 Copyright declaration Attention is drawn to the fact that copyright of this thesis/portfolio rests with the author and copyright of any previously published materials included may rest with third parties. A copy of this thesis/portfolio has been supplied on condition that anyone who consults it understands that they must not copy it or use material from it except as licenced, permitted by law or with the consent of the author or other copyright owners, as applicable.
    [Show full text]