Design Strategies for the Northern Shelf Bioregional Marine Protected Area Network

Total Page:16

File Type:pdf, Size:1020Kb

Design Strategies for the Northern Shelf Bioregional Marine Protected Area Network Canadian Science Advisory Secretariat (CSAS) Research Document 2021/024 Pacific Region Design Strategies for the Northern Shelf Bioregional Marine Protected Area Network Rebecca G Martone1, Carolyn K Robb1, Katie SP Gale2, Alejandro Frid3, Chris McDougall4, and Emily Rubidge2 1Pacific Biological Station Fisheries and Oceans Canada 3190 Hammond Bay Road Nanaimo, BC V9T 6N7 2Institute of Ocean Sciences Fisheries and Oceans Canada PO Box 6000 Sidney, BC V8L 4B2 3Central Coast Indigenous Resource Alliance 2790 Vargo Rd Campbell River, BC V9W 4X1 4Haida Fisheries Program Council of the Haida Nation PO Box 87 Massett, Haida Gwaii V0T 1M0 March 2021 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2021 ISSN 1919-5044 Correct citation for this publication: Martone, R.G., Robb, C.K., Gale, K.S.P., Frid, A., McDougall, C., and Rubidge, E. 2021. Design Strategies for the Northern Shelf Bioregional Marine Protected Area Network. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/024. xi + 156 p. Aussi disponible en français : Martone, R.G., Robb, C.K., Gale, K.S.P., Frid, A., McDougall, C. et Rubidge, E. 2021. Stratégies de conception pour le réseau d’aires marines protégées dans la biorégion du plateau Nord. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/024. xiii + 178 p. TABLE OF CONTENTS ABSTRACT ................................................................................................................................. x ACRONYMS .............................................................................................................................. xi 1. INTRODUCTION/BACKGROUND ..........................................................................................1 1.1. CONTEXT – DESIGN STRATEGIES FOR THE MPA NETWORK DEVELOPMENT PROCESS IN THE NSB ......................................................................................................... 1 1.2. SCOPE ........................................................................................................................... 4 2. ECOLOGICAL NETWORK DESIGN PRINCIPLES, DESIGN GUIDELINES, AND DESIGN STRATEGIES .............................................................................................................................5 2.1. PRINCIPLE 1: INCLUDE THE FULL RANGE OF BIODIVERSITY .................................. 6 2.1.1. Guideline Concept: Representation .......................................................................... 7 2.1.2. Guideline Concept: Replication................................................................................. 8 2.2. PRINCIPLE 2: ENSURE ECOLOGICALLY AND BIOLOGICALLY SIGNIFICANT AREAS ARE INCORPORATED .......................................................................................................... 8 2.3. PRINCIPLE 3: ENSURE ECOLOGICAL LINKAGES ....................................................... 9 2.3.1. Guideline Concept: Connectivity ............................................................................... 9 2.4. PRINCIPLE 4: MAINTAIN LONG-TERM PROTECTION ................................................10 2.4.1. Guideline Concept: MPA level of protection .............................................................10 2.5. PRINCIPLE 5: ENSURE MAXIMUM CONTRIBUTION OF INDIVIDUAL MPAs ..............11 2.5.1. Guideline Concept: Size ..........................................................................................11 2.5.2. Guideline Concept: Shape .......................................................................................13 2.5.3. Guideline Concept: Spacing ....................................................................................13 3. REVIEW OF METHODS FOR SETTING REPRESENTATION AND REPLICATION TARGETS FOR ECOLOGICAL CONSERVATION PRIORITIEs ............................................... 14 3.1. DESCRIPTION OF APPROACHES ...............................................................................14 3.1.1. Policy-driven approaches ........................................................................................15 3.1.2. Expert opinion and heuristic approaches .................................................................15 3.1.3. Quantitative analytical approaches ..........................................................................16 3.2. REVIEW OF APPROACHES APPLIED IN CANADA AND THE NORTHEAST PACIFIC16 3.2.1. British Columbia Marine Conservation Analysis .......................................................16 3.2.2. Gwaii Haanas ..........................................................................................................16 3.2.3. Scotian Shelf Bioregion ...........................................................................................17 3.2.4. Pacific Northwest Marine Ecoregional Assessment .................................................17 4. SETTING ECOLOGICAL CONSERVATION TARGETS IN THE NSB ................................... 19 4.1. ECOLOGICAL CONSERVATION PRIORITIES FOR THE NSB .....................................19 4.2. SETTING ECOLOGICAL CONSERVATION TARGETS FOR COARSE-FILTER CONSERVATION PRIORITIES ............................................................................................21 4.3. SETTING ECOLOGICAL CONSERVATION TARGETS FOR FINE-FILTER CONSERVATION PRIORITIES ............................................................................................22 4.3.1. Calculation of fine-filter ecological conservation target scores .................................23 iii 4.3.2. Species-based conservation priorities (excluding marine birds) ...............................24 4.3.3. Species-based conservation priorities (for marine birds) .........................................26 4.3.4. Area-based conservation priorities ..........................................................................27 4.3.5. Expert review ...........................................................................................................28 4.3.6. Fine-filter ecological conservation target ranges ......................................................28 5. DETERMINING THE CONSERVATION PRIORITIES APPROPRIATE FOR INCLUSION IN DESIGN SCENARIOS ..........................................................................................................29 6. RESULTS: ECOLOGICAL CONSERVATION TARGETS FOR COARSE-FILTER FEATURES ...............................................................................................................................31 7. RESULTS: ECOLOGICAL CONSERVATION TARGETS FOR FINE-FILTER FEATURES ... 35 7.1. SPECIES-BASED CONSERVATION PRIORITIES ........................................................35 7.2. AREA-BASED CONSERVATION PRIORITIES ..............................................................38 8. RESULTS FOR OTHER DESIGN STRATEGIES ..................................................................39 8.1. REPLICATION ...............................................................................................................39 8.1.1. Replication across scales ........................................................................................39 8.1.2. Varying the number of replicates by patch size and rarity ........................................40 8.2. MPA SIZE AND SPACING .............................................................................................41 8.2.1. MPA Size ................................................................................................................41 8.2.2. MPA Spacing ...........................................................................................................44 8.3. INCORPORATING MPA EFFECTIVENESS INTO THE APPLICATION OF ECOLOGICAL CONSERVATION TARGETS IN MPA SITE-SELECTION ANALYSES .........47 8.3.1. Risk-based approach for assessing impacts to conservation priorities.....................47 8.3.2. MPA performance scaling factors to weight the achievement of ecological conservation targets ..........................................................................................................49 8.3.3. Combination of the risk-based approach and MPA performance scaling factors ......50 8.3.4. IUCN levels of protection .........................................................................................50 9. DISCUSSION ........................................................................................................................51 9.1. ECOLOGICAL CONSERVATION TARGET-SETTING ...................................................52 9.1.1. Ecological conservation targets and MPA network coverage ...................................52 9.1.2. Coarse-filter features and naturalness .....................................................................53 9.1.3. Fine-scale conservation priority features .................................................................53 9.1.4. Expert review ...........................................................................................................54 9.1.5. Limitations ...............................................................................................................55
Recommended publications
  • Analysis of Synonymous Codon Usage Patterns in Sixty-Four Different Bivalve Species
    Analysis of synonymous codon usage patterns in sixty-four diVerent bivalve species Marco Gerdol1, Gianluca De Moro1, Paola Venier2 and Alberto Pallavicini1 1 Department of Life Sciences, University of Trieste, Trieste, Italy 2 Department of Biology, University of Padova, Padova, Italy ABSTRACT Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across diVerent genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 diVerent species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable diVerences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational eYciency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Pectenovarin, a New Ovarian Carotenoprotein from Japanese Scallop Mizuhopecten Yessoensis
    molecules Article Pectenovarin, A New Ovarian Carotenoprotein from Japanese Scallop Mizuhopecten yessoensis Satoko Matsunaga 1,* , Hiroki Ikeda 2 and Ryuichi Sakai 2 1 Department of Material and Environmental Engineering, National Institute of Technology HAKODATE College, 14-1 Tokura-cho, Hakodate, Hokkaido 042-8501, Japan 2 Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan; [email protected] (H.I.); ryu.sakai@fish.hokudai.ac.jp (R.S.) * Correspondence: [email protected]; Tel.: +81-138-59-6463 Academic Editor: Valeria Costantino Received: 9 June 2020; Accepted: 30 June 2020; Published: 3 July 2020 Abstract: The scallop Mizuhopecten yessoensis accumulates carotenoids in the ovary during the maturation stage. Its conspicuous pink color implies the presence of carotenoprotein. However, the carotenoprotein from the scallop ovary has never been isolated and characterized, probably due to its instability and complexity. Here, we developed an extraction and isolation procedure for the carotenoprotein by employing a basic buffer containing potassium bromide to facilitate its efficient extraction from the ovary, and we succeeded in obtaining the carotenoprotein, termed pectenovarin. The carotenoid composition of the pectenovarin was similar to that of the ovary. The N-terminal and internal amino acid sequences of pectenovarin showed a high similarity to those of vitellogenin, the precursor of egg yolk protein under analysis. Keywords: carotenoproteins; carotenoids; scallop ovary; Japanese scallop 1. Introduction Carotenoids are one of the essential classes of metabolites in a wide variety of living organisms. More than 750 different carotenoids have been reported to date [1]. It is known that carotenoids bind to proteins, termed carotenoproteins, to stabilize themselves against light or heat or to manipulate their physical properties, including solubility and color.
    [Show full text]
  • The Shell Matrix of the European Thorny Oyster, Spondylus Gaederopus: Microstructural and Molecular Characterization
    The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. Jorune Sakalauskaite, Laurent Plasseraud, Jérôme Thomas, Marie Alberic, Mathieu Thoury, Jonathan Perrin, Frédéric Jamme, Cédric Broussard, Beatrice Demarchi, Frédéric Marin To cite this version: Jorune Sakalauskaite, Laurent Plasseraud, Jérôme Thomas, Marie Alberic, Mathieu Thoury, et al.. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization.. Journal of Structural Biology, Elsevier, 2020, 211 (1), pp.107497. 10.1016/j.jsb.2020.107497. hal-02906399 HAL Id: hal-02906399 https://hal.archives-ouvertes.fr/hal-02906399 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The shell matrix of the European thorny oyster, Spondylus gaederopus: microstructural and molecular characterization List of authors: Jorune Sakalauskaite1,2, Laurent Plasseraud3, Jérôme Thomas2, Marie Albéric4, Mathieu Thoury5, Jonathan Perrin6, Frédéric Jamme6, Cédric Broussard7, Beatrice Demarchi1, Frédéric Marin2 Affiliations 1. Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; 2. Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France. 3. Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy- Franche-Comté, 9 Avenue Alain Savary, 21000 Dijon, France.
    [Show full text]
  • Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
    Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida:
    [Show full text]
  • Computational Modelling of Wet Adhesive Mussel Foot Proteins (Bivalvia): Insights Into the Evolutionary Convolution in Diverse Perspectives P
    www.nature.com/scientificreports OPEN Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives P. P. Anand & Y. Shibu Vardhanan Underwater adhesion in mussels (Bivalvia) is an extreme adaptation to achieve robust and frm wet adhesion in the freshwater/brackish/ocean, which biochemically shaped through millions of years. The protein-based adhesion has huge prospective in various felds like industry, medical, etc. Currently, no comprehensive records related to the systematic documentation of structural and functional properties of Mussel foot proteins (Mfps). In this study, we identifed the nine species of bivalves in which the complete sequence of at least one adhesive protein is known. The insilico characterization revealed the specifc physio-chemical structural and functional characters of each Mfps. The evolutionary analyses of selected bivalves are mainly based on Mfps, Mitogenome, and TimeTree. The outcome of the works has great applications for designing biomimetic materials in future. Some groups of mussels are capable to produce proteinaceous glue- like sticky material known as byssus thread made by an array of foot proteins (fps). Tis byssus contains mainly four parts i.e. Plaque, thread, stem, and root. Individual threads proximally merged together to form stem and base of the stem (root) deeply anchored at the base of animal foot. Each byssus threads terminating distally with a fattened plaque which mediates adhesion to the substratum1–4. Each part of the byssus thread complex formed by the auto-assembly of secretory products originating from four distinct glands enclosed in the mussel foot4,5. Tese mussel foot protein (Mfps), mastered the ability to binding the diverse substratum by using adhesive plaques.
    [Show full text]
  • An Integrative Systematic Framework Helps to Reconstruct Skeletal
    Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution.
    [Show full text]
  • Comparative Large-Scale Mitogenomics Evidences Clade-Specific Evolutionary Trends in Mitochondrial Dnas of Bivalvia
    GBE Comparative Large-Scale Mitogenomics Evidences Clade-Specific Evolutionary Trends in Mitochondrial DNAs of Bivalvia Federico Plazzi*, Guglielmo Puccio, and Marco Passamonti Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 – 40126 Bologna, Italy *Corresponding author: E-mail: [email protected]. Accepted: July 31, 2016 Abstract Despite the figure of complete bivalve mitochondrial genomes keeps growing, an assessment of the general features of these genomes in a phylogenetic framework is still lacking, despite the fact that bivalve mitochondrial genomes are unusual under different aspects. In this work, we constructed a dataset of one hundred mitochondrial genomes of bivalves to perform the first systematic comparative mitogenomic analysis, developing a phylogenetic background to scaffold the evolutionary history of the class’ mito- chondrial genomes. Highly conserved domains were identified in all protein coding genes; however, four genes (namely, atp6, nad2, nad4L,andnad6) were found to be very divergent for many respects, notwithstanding the overall purifying selection working on those genomes. Moreover, the atp8 gene was newly annotated in 20 mitochondrial genomes, where it was previously declared as lacking or only signaled. Supernumerary mitochondrial proteins were compared, but it was possible to find homologies only among strictly related species. The rearrangement rate on the molecule is too high to be used as a phylogenetic marker, but here we demonstrate for the first time in mollusks that there is correlation between rearrangement rates and evolutionary rates. We also developed a new index (HERMES) to estimate the amount of mitochondrial evolution. Many genomic features are phylogenetically congruent and this allowed us to highlight three main phases in bivalve history: the origin, the branching of palaeoheterodonts, and the second radiation leading to the present-day biodiversity.
    [Show full text]
  • The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States
    NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R. P. Stone, K. W. Conway, D. J. Csepp, J. V. Barrie U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center January 2014 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stone, R. P., K. W. Conway, D. J. Csepp, and J. V. Barrie. 2013. The boundary reefs: glass sponge (Porifera: Hexactinellida) reefs on the international border between Canada and the United States. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-264, 31 p. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-264.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • An Upper Miocene Hexactinellid Sponge from the Puente Shale, Orange County, California J
    J. Paleont., 70(6), 1996, pp. 908-913 Copyright © 1996, The Paleontological Society 0022-3360/96/0070-0908S03.00 AN UPPER MIOCENE HEXACTINELLID SPONGE FROM THE PUENTE SHALE, ORANGE COUNTY, CALIFORNIA J. KEITH RIGBY AND YVONNE ALBI Room 210 Page School, Department of Geology, Brigham Young University, Provo, Utah 84602, and 7001 Vista Del Mar Lane, Playa del Rey, California 90293 ABSTRACT—Well-preserved, laterally flattened, farreid hexactinellid sponges of the new species Farrea rugosa have been recently discovered in the upper Miocene Puente Shale in the Peralta Hills in southeastern Anaheim, Orange County, California. This is the first farreid sponge reported from the Miocene of California and is one of the few Miocene sponges reported from North America. The cluster is of upward bifurcating, moderately complex sponges in which branches are regularly rugose and skeletons are each a single layer of dictyid net, with aborted proximal and distal rays in the otherwise laterally fused quadruled skeleton of original silica. The sponges occur in pinkish brown sandy siltstone in the limited exposure beneath older alluvium that blankets much of the local area. INTRODUCTION nifera include several species of Bolivina d'Orbigny, 1839, and NEARLY COMPLETE cluster of laterally flattened farreid hex- single species of Eponides de Montfort, 1808, Pseudoparella A actinellid sponges has been collected from the Upper Mio- Cushman and Ten Dam, 1948, and Suggrunda Hoffmeister and cene Puente Shale, probably the Yorba Member, in the Peralta Berry, 1937, according to Richmond (1952). These beds were Hills area of eastern Anaheim, Orange County, California (Fig- exposed in a shallow ditch at the time the collections were made, ure 1).
    [Show full text]