Turmeric Research

Total Page:16

File Type:pdf, Size:1020Kb

Turmeric Research Article Title: Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy. Date & Journal: J Nanosci Nanotechnol. 2019 Nov 1 • Bone cancer or osteosarcoma is an aggressive cancer affecting the long bones and is treated by a combination of surgery and chemotherapy. Local drug delivery directly to the site of bone cancer and the use of plant-based drugs has been explored towards improving the efficacy and decreasing the toxicity of the anti- cancer drugs. Curcumin, derived from turmeric is highly effective against cancer cells and shows very low toxicity against normal cells. Bone repair is facilitated by use of bone substitutes such as bioceramics, amongst which the carbonated apatite (CA) nanocarriers closely mimic the natural bone mineral. In the current work, we have developed CA nanocarriers based local delivery of curcumin as an adjunct treatment for bone cancer. CA nanocarriers with 6 wt.% carbonate were prepared by wet chemical synthesis using synthetic derived (6SWCA) and eggshell derived (6EWCA) precursors along with hydroxyapatite (WHA) as a control. The X-ray diffraction (XRD) patterns showed the CAs to be phase pure with a mean crystallite size of 17 nm. The Fouriertransform infrared spectroscopy (FTIR) analysis of both CAs indicated the carbonate substitution as B-Type. The amount of carbonate substitution was observed to be around 6 wt.% using FTIR and CHNO elemental analyzer. The 6EWCA showed a greater loading (36%) and release (66%) of curcumin than 6SWCA and WHA nanocarriers. The bovine serum albumin (BSA) protein denaturation assay showed the curcumin loaded CAs to be highly anti- inflammatory while their anti-cancer activity was confirmed by the high cytotoxic activity against MG-63 human osteosarcoma cells. Conclusively, an eggshell derived apatite drug delivery system was found to be very suitable to cure osteosarcoma, prevent post-cancer inflammation and modulate bone repair and regeneration. Article Title: Curcumin: New Insights into an Ancient Ingredient against Cancer. Date & Journal: Int J Mol Sci. 2019 Apr 12 • Cancer patients frequently use complementary medicine. Curcumin (CUR) and its derivates (from the extract of Curcuma longa L.) represent some of the most frequently used ones, having a long history in traditional Asian medicine. CUR was demonstrated, both in vitro and in vivo, to have significant anti- inflammatory effects, thus potentially counteracting cancer-promoting inflammation, which is a hallmark of cancer. CUR modulate a plethora of signaling pathways in cancer cells, comprising the NF-κB (nuclear factor k- light-chain-enhancer of activated B cells), the JAK/STAT (Janus-Kinase/Signal Transducers and Activators of Transcription), and the TGF-β (transforming growth factor-β) pathways. Furthermore, CUR confers properties of electron receptors, which destabilize radical oxygen species (ROS), explaining its antioxidant and anti-apopototic effects. Although CUR has a low bioavailability, its role in advanced cancer treatment and supportive care was addressed in numerous clinical trials. After promising results in phase I⁻II trials, multiple phase III trials in different indications are currently under way to test for direct anti-cancer effects. In addition, CUR exerts beneficial effects on cancer treatment-related neurotoxcity, cardiotoxicity, nephrotoxicity, hemato-toxicity, and others. More efficient galenic formulations are tested to optimze CUR's usability in cancer treatment. This review should provide a comprehensive overview of basic science, and pre-clinical and clinical data on CUR in the field of oncology. Article Title: The impact of curcumin and its modified formulations on Alzheimer's disease. Date & Journal: J Cell Physiol. 2019 Mar 7 • Alzheimer's disease (AD) is a major health problem worldwide, with no effective treatment approach. Curcumin is the main ingredient of turmeric traditionally used in Asian medicine. Several experimental studies have indicated the protective effect of curcumin and its novel formulations in AD. Curcumin has antioxidant, anti- inflammatory and neurotrophic activities, proposing a strong potential to prevent neurodegenerative diseases. However, there are no sufficient clinical trials to confirm curcumin use in AD patients. Low bioavailability following oral administration of curcumin limits its usage in human. The present study was designed to gather the effects of curcumin and its modified formulations in human and experimental models of AD. Article Title: The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells. Date & Journal: Medicina (Kaunas). 2019 Apr 3 • Background and objectives: Mounting evidence shows that curcumin, a bioactive substance originating from turmeric root, has anticancer properties. Additionally, curcumin prevents the migration and metastasis of tumor cells. However, the molecular mechanism involved in the anti-metastatic action of curcumin is not clear. Most studies have suggested that migration inhibition is related to curcumin's anti- inflammatory properties. Curcumin possesses a regulatory effect on insulin and insulin-like growth factor-1 (IGF-1) receptors and signaling. Insulin signaling is one of the important pathways involved in tumor initiation and progression; therefore, we proposed that the anti-metastatic effect of curcumin may mediate the downregulation of insulin and insulin-like growth factor-1 receptors. Materials and Methods: Viable resistant cells resulting from treating SW480 cells with 5-fluorouracil (5-FU) were subjected to curcumin treatment to analyze the proliferation and migration capacity in comparison to the untreated counterparts. To test the proliferation and migration potential, MTT, colony formation, and wound healing assays were performed. Real-time polymerase chain reaction (RT-PCR) was performed to measure the mRNA expression of insulin-like growth factor-1R (IGF-1R), insulin receptor (IR), and avian myelocytomatosis virus oncogene cellular homolog (MYC). Results: Our findings showed that curcumin significantly decreased insulin and IGF-1 receptors in addition to MYC expression. Additionally, the downregulation of the insulin and insulin-like growth factor-1 receptors was correlated to a greater decrease in the proliferation and migration of chemoresistant colorectal cancer cells. Conclusions: These results suggest the possible therapeutic effectiveness of curcumin in adjuvant therapy in metastatic colorectal cancer. Article Title: Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial. Date & Journal: J Ethnopharmacol. 2019 Apr 13 • ETHNOPHARMACOLOGICAL RELEVANCE: Roots of Curcuma longa L. are used as medicine for millennia. They possess several pharmacological properties, including anti- inflammatory action, and can be suitable for asthma treatment. • AIM OF THE STUDY: We aimed to test the hypothesis that, in children and adolescents with persistent asthma, the administration of powdered roots of C. longa for 6 months, in addition to standard treatment, compared to placebo, will result in better disease control. • PATIENTS AND METHODS: We conducted a randomized, double-blind, placebo- controlled, phase II clinical trial. Patients were randomly assigned to receive 30mg/kg/ day of C. longa for 6 months, or placebo. Data were collected prospectively. All patients were categorized for asthma severity and control according to GINA-2016 and underwent pulmonary function tests. • RESULTS:Overall, both groups experienced amelioration of their frequency of symptoms and interference with normal activity, but no differences were found between the two treatment groups. However, patients receiving C. longa experienced less frequent nighttime awakenings, less frequent use of short-acting β-adrenergic agonists, and better disease control after 3 and 6 months. • CONCLUSION: The powdered roots of C. longa led to less frequent nighttime awakenings, less frequent use of short-acting β-adrenergic agonists, and better disease control after 3 and 6 months, when compared to placebo. CURCUMIN EXERTS ANTI-INFLAMMATORY AND VASOPROTECTIVE EFFECTS THROUGH AMELIORATION OF NFAT-DEPENDENT ENDOTHELIN-1 PRODUCTION IN MICE WITH ACUTE CHAGAS CARDIOMYOPATHY Mem Inst Oswaldo Cruz. 2018 Jul 16;113(9):e180171. doi: 10.1590/0074-02760180171. •METHODS: Inflammation of heart vessels from Cur-treated and untreated infected mice were analysed by histology, with benznidazole (Bz) as the reference compound. Parasitaemia was monitored by the direct method. Capillary permeability was visualised by Evans-blue assay. Myocardial ET-1, IL-6, and TNF-α mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT- PCR). Microvascular endothelial HMEC-1 cells were infected in vitro with or without addition of Cur or Bz. Induction of the Ca2+/NFAT pathway was assessed by fluorometry, immunoblotting, and reporter assay. •FINDINGS: Oral Cur therapy of recently infected mice reduced inflammatory cell infiltration of myocardial arteries without lowering parasite levels. Compared to that of the phosphate-buffered saline-receiving group, hearts from Cur-treated mice showed significantly decreased vessel inflammation scores (p < 0.001), vascular permeabilities (p < 0.001), and levels of IL-6/TNF-α (p < 0.01) and ET-1 (p < 0.05) mRNA. Moreover, Cur significantly
Recommended publications
  • Enzymes Handling/Processing
    Enzymes Handling/Processing 1 Identification of Petitioned Substance 2 3 This Technical Report addresses enzymes used in used in food processing (handling), which are 4 traditionally derived from various biological sources that include microorganisms (i.e., fungi and 5 bacteria), plants, and animals. Approximately 19 enzyme types are used in organic food processing, from 6 at least 72 different sources (e.g., strains of bacteria) (ETA, 2004). In this Technical Report, information is 7 provided about animal, microbial, and plant-derived enzymes generally, and more detailed information 8 is presented for at least one model enzyme in each group. 9 10 Enzymes Derived from Animal Sources: 11 Commonly used animal-derived enzymes include animal lipase, bovine liver catalase, egg white 12 lysozyme, pancreatin, pepsin, rennet, and trypsin. The model enzyme is rennet. Additional details are 13 also provided for egg white lysozyme. 14 15 Chemical Name: Trade Name: 16 Rennet (animal-derived) Rennet 17 18 Other Names: CAS Number: 19 Bovine rennet 9001-98-3 20 Rennin 25 21 Chymosin 26 Other Codes: 22 Prorennin 27 Enzyme Commission number: 3.4.23.4 23 Rennase 28 24 29 30 31 Chemical Name: CAS Number: 32 Peptidoglycan N-acetylmuramoylhydrolase 9001-63-2 33 34 Other Name: Other Codes: 35 Muramidase Enzyme Commission number: 3.2.1.17 36 37 Trade Name: 38 Egg white lysozyme 39 40 Enzymes Derived from Plant Sources: 41 Commonly used plant-derived enzymes include bromelain, papain, chinitase, plant-derived phytases, and 42 ficin. The model enzyme is bromelain.
    [Show full text]
  • Biochemistry and the Genomic Revolution 1.1
    Dedication About the authors Preface Tools and Techniques Clinical Applications Molecular Evolution Supplements Supporting Biochemistry, Fifth Edition Acknowledgments I. The Molecular Design of Life 1. Prelude: Biochemistry and the Genomic Revolution 1.1. DNA Illustrates the Relation between Form and Function 1.2. Biochemical Unity Underlies Biological Diversity 1.3. Chemical Bonds in Biochemistry 1.4. Biochemistry and Human Biology Appendix: Depicting Molecular Structures 2. Biochemical Evolution 2.1. Key Organic Molecules Are Used by Living Systems 2.2. Evolution Requires Reproduction, Variation, and Selective Pressure 2.3. Energy Transformations Are Necessary to Sustain Living Systems 2.4. Cells Can Respond to Changes in Their Environments Summary Problems Selected Readings 3. Protein Structure and Function 3.1. Proteins Are Built from a Repertoire of 20 Amino Acids 3.2. Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains 3.3. Secondary Structure: Polypeptide Chains Can Fold Into Regular Structures Such as the Alpha Helix, the Beta Sheet, and Turns and Loops 3.4. Tertiary Structure: Water-Soluble Proteins Fold Into Compact Structures with Nonpolar Cores 3.5. Quaternary Structure: Polypeptide Chains Can Assemble Into Multisubunit Structures 3.6. The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure Summary Appendix: Acid-Base Concepts Problems Selected Readings 4. Exploring Proteins 4.1. The Purification of Proteins Is an Essential First Step in Understanding Their Function 4.2. Amino Acid Sequences Can Be Determined by Automated Edman Degradation 4.3. Immunology Provides Important Techniques with Which to Investigate Proteins 4.4. Peptides Can Be Synthesized by Automated Solid-Phase Methods 4.5.
    [Show full text]
  • Molecular Insights Into Bromelain Application in Industry and Health Care
    Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 15 (2020) Pp-36-46 Molecular Insights into Bromelain Application in Industry and Health Care Sushma S. Murthy and T. Bala Narsaiah 1Research Scholar, Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India 2Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India ABSTRACT Bromelain is a cysteine protease derived from the stem and fruit of the pineapple. It has a significant role in pharmacological and clinical applications. Studies have shown Bromelain to be a potent photoactive compound that has a wide application in industry. It has also been shown to be effective in treatment of cancer, inflammation, and allergies. It has a distinct immunomodulatory activity which forms an important strategy in its utilization as a therapeutic agent. Bromelain plays a significant role at molecular level by regulating the expression of proteins that are potential therapeutic targets. Bromelain is used extensively worldwide as an herbal medicine as it promises good efficacy and has no side effects. This paper reviews the general characteristics of Bromelain, its separation process, and its use in industries and healthcare as a therapeutic agent. The present review identifies that there is lack of knowledge pertaining to the mode of action of Bromelain in inhibiting transcriptional factors and in controlling cancer. An in-detail analysis in this area might help in expanding the therapeutic scope of Bromelain. KEY WORDS: BROMELAIN, CANCER, PHARMacOLOGICAL actiVITY, SEpaRatiON, TRANSCRIPTION FactORS. INTRODUCTION because of its wide benefits to the human system. The stem part of the plant, which is inexpensive and is usually The Bromelain protease is isolated from the stem and discarded, has a high concentration of bromelain and fruit of Pineapple (Ananas comosus,).
    [Show full text]
  • Role of Systemic Enzymes in Infections
    Article ID: WMC002495 2046-1690 Role of Systemic Enzymes in Infections Corresponding Author: Dr. Sukhbir Shahid, Consultant Pediatrician, Pediatrics - India Submitting Author: Dr. Sukhbir Shahid, Consultant Pediatrician, Pediatrics - India Article ID: WMC002495 Article Type: Review articles Submitted on:22-Nov-2011, 08:16:56 AM GMT Published on: 22-Nov-2011, 02:34:00 PM GMT Article URL: http://www.webmedcentral.com/article_view/2495 Subject Categories:COMPLEMENTARY MEDICINE Keywords:Enzymes, Systemic enzymes, Infections, Sepsis, Proteolytic, Supplementary How to cite the article:Shahid S . Role of Systemic Enzymes in Infections . WebmedCentral COMPLEMENTARY MEDICINE 2011;2(11):WMC002495 Source(s) of Funding: None Competing Interests: None WebmedCentral > Review articles Page 1 of 13 WMC002495 Downloaded from http://www.webmedcentral.com on 23-Dec-2011, 07:57:46 AM Role of Systemic Enzymes in Infections Author(s): Shahid S Abstract infections[4]. The ‘battle’ between the host’s immunity and organism leads to a lot of ‘molecular’morbidity and mortality. Anti-infective agents do help but at times benefit is marginal. These agents may sometimes Enzymes are complex macromolecules of amino-acids worsen the situation through release of immune which bio-catalyse various body processes. Adequate complexes and dead bacilli into the blood stream. concentrations of enzymes are essential for optimal They also fail to reverse the hemodynamic instability functioning of the immune system. During infections, and immune paralysis characteristic of these body’s enzymatic system is attacked and hence the infections[4]. Supplementation with drugs targeted immune system is also likely to derange. This may be against this ‘choatic’ or ‘dysfunctional’ immune detrimental for the host’s well-being and existence.
    [Show full text]
  • Concentrate of Proteolytic Enzymes Enriched in Bromelain
    20 September 2012 EMA/648483/2012 Committee for Medicinal Products for Human Use (CHMP) Assessment report NexoBrid Concentrate of proteolytic enzymes enriched in bromelain Procedure No. EMEA/H/C/002246 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 5 1.1. Submission of the dossier.................................................................................... 5 1.2. Steps taken for the assessment of the product ....................................................... 6 2. Scientific discussion ................................................................................ 7 2.1. Introduction ...................................................................................................... 7 2.2. Quality aspects .................................................................................................. 9 2.3. Non-clinical aspects .......................................................................................... 20 2.4. Clinical aspects ................................................................................................ 29 2.5.
    [Show full text]
  • Food and Drugs
    21 Parts 300 to 499 Revised as of April 1, 2004 Food and Drugs Containing a codification of documents of general applicability and future effect As of April 1, 2004 With Ancillaries Published by Office of the Federal Register National Archives and Records Administration A Special Edition of the Federal Register VerDate mar<24>2004 15:46 Apr 22, 2004 Jkt 203068 PO 00000 Frm 00001 Fmt 8091 Sfmt 8091 Y:\SGML\203068F.XXX 203068F U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 2004 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402–0001 VerDate mar<24>2004 15:46 Apr 22, 2004 Jkt 203068 PO 00000 Frm 00002 Fmt 8092 Sfmt 8092 Y:\SGML\203068F.XXX 203068F Table of Contents Page Explanation ................................................................................................ v Title 21: Chapter I—Food and Drug Administration, Department of Health and Human Services (Continued) ................................................. 3 Finding Aids: Material Approved for Incorporation by Reference ............................ 335 Table of CFR Titles and Chapters ....................................................... 337 Alphabetical List of Agencies Appearing in the CFR ......................... 355 List of CFR Sections Affected ............................................................. 365 iii VerDate May<04>2004 11:24 May 20, 2004 Jkt 203068 PO 00000 Frm 00003 Fmt 8092 Sfmt 8092 Y:\SGML\203068F.XXX 203068F Cite this Code: CFR To cite the regulations in this volume use title, part and section num- ber. Thus, 21 CFR 300.50 refers to title 21, part 300, section 50. iv VerDate mar<24>2004 15:46 Apr 22, 2004 Jkt 203068 PO 00000 Frm 00004 Fmt 8092 Sfmt 8092 Y:\SGML\203068F.XXX 203068F Explanation The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Register by the Executive departments and agen- cies of the Federal Government.
    [Show full text]
  • Chapter 11 Cysteine Proteases
    CHAPTER 11 CYSTEINE PROTEASES ZBIGNIEW GRZONKA, FRANCISZEK KASPRZYKOWSKI AND WIESŁAW WICZK∗ Faculty of Chemistry, University of Gdansk,´ Poland ∗[email protected] 1. INTRODUCTION Cysteine proteases (CPs) are present in all living organisms. More than twenty families of cysteine proteases have been described (Barrett, 1994) many of which (e.g. papain, bromelain, ficain , animal cathepsins) are of industrial impor- tance. Recently, cysteine proteases, in particular lysosomal cathepsins, have attracted the interest of the pharmaceutical industry (Leung-Toung et al., 2002). Cathepsins are promising drug targets for many diseases such as osteoporosis, rheumatoid arthritis, arteriosclerosis, cancer, and inflammatory and autoimmune diseases. Caspases, another group of CPs, are important elements of the apoptotic machinery that regulates programmed cell death (Denault and Salvesen, 2002). Comprehensive information on CPs can be found in many excellent books and reviews (Barrett et al., 1998; Bordusa, 2002; Drauz and Waldmann, 2002; Lecaille et al., 2002; McGrath, 1999; Otto and Schirmeister, 1997). 2. STRUCTURE AND FUNCTION 2.1. Classification and Evolution Cysteine proteases (EC.3.4.22) are proteins of molecular mass about 21-30 kDa. They catalyse the hydrolysis of peptide, amide, ester, thiol ester and thiono ester bonds. The CP family can be subdivided into exopeptidases (e.g. cathepsin X, carboxypeptidase B) and endopeptidases (papain, bromelain, ficain, cathepsins). Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate, whereas endopeptidases cleave peptide bonds distant from the N- or C-termini. Cysteine proteases are divided into five clans: CA (papain-like enzymes), 181 J. Polaina and A.P. MacCabe (eds.), Industrial Enzymes, 181–195.
    [Show full text]
  • A Cysteine Proteinase Inhibitor of Human Saliva We Have Recently
    COMMUNICATION J. Biochem. 96,1311-1314 (1984) Cystatin S : A Cysteine Proteinase Inhibitor of Human Saliva Satoko ISEMURA,* Eiichi SAITOH,* Seiki ITO,** Mamoru ISEMURA,*** and Kazuo SANADA* *Department of Oral Biochemistry , Niigata Faculty, Nippon Dental University. Niigata 951, **First Department of Internal Medicine, Niigata University School of Medicine, Niigata 951, and ***Department of Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi 980 Received for publication, July 12, 1984 An acidic protein of human saliva, which we named SAP-1 previously, is now shown to be an inhibitor of several cysteine proteinases. The protein inhibited papain and ficin strongly, and stem bromelain and bovine cathepsin C partially. How ever, it did not inhibit either porcine cathepsin B or clostripain. The mode of the inhibition of papain was found to be non-competitive. The name cystatin S has been proposed for this salivary protein in view of the similarities in activity and structure to other cysteine proteinase inhibitors such as chicken egg-white cystatin and human cystatins A, B, and C. The cystatin S antigen was detected immunohistochemically in the serous cells of human parotid and submaxillary glands. We have recently isolated an acidic protein, SAP-1, 3.4.22.3], bromelain [EC 3.4.22.4], and clostripain with a molecular weight of 12,552 and PI 4.68 [EC 3.4.22.8] from Sigma; cathepsin C [dipeptidyl from human whole saliva, and determined its peptidase I, EC 3.4.14.1] from Serva; trypsin [EC amino acid sequence (1). This protein has se 3.4.21.4] and chymotrypsin [EC 3.4.21.1] from quence homology of 54% with human y-trace, the Worthington Biochemical Inc.
    [Show full text]
  • A Factor X-Activating Cysteine Protease from Malignant Tissue
    A factor X-activating cysteine protease from malignant tissue. S G Gordon, B A Cross J Clin Invest. 1981;67(6):1665-1671. https://doi.org/10.1172/JCI110203. Research Article A proteolytic procoagulant has been identified in extracts of human and animal tumors and in cultured malignant cells. It directly activated Factor X but its similarity to other Factor S-activating serine proteases was not clear. This study describes work done to determine whether this enzyme, cancer procoagulant, is a serine or cysteine protease. Purified cancer procoagulant from rabbit V2 carcinoma was bound to a p-chloromercurialbenzoate-agarose affinity column and was eluted with dithiothreitol. The initiation of recalcified, citrated plasma coagulation activity by cancer procoagulant was inhibited by 5 mM diisopropylfluorophosphate, 1 mM phenylmethylsulfonylfluoride, 0.1 mM HgCl2, and 1 mM iodoacetamide. Activity was restored in the diisopropylfluorophosphate-, phenylmethylsulfonylfluoride-, and HgCl2- inhibited samples by 5 mM dithiothreitol; iodoacetamide inhibition was irreversible. Russell's viper venom, a control Factor X-activating serine protease, was not inhibited by either 0.1 mM HgCl2 or 1 mM iodoacetamide. The direct activation of Factor X by cancer procoagulant in a two-stage assay was inhibited by diisopropylfluorophosphate and iodoacetamide. Diisopropylfluorophosphate inhibits serine proteases, and an undefined impurity in most commercial preparations inhibits cysteine proteases. Hydrolysis of diisopropylfluorophosphate with CuSO4 and imidazole virtually eliminated inhibition of thrombin, but cancer procoagulant inhibition remained complete, suggesting that cancer procoagulant was inhibited by the undefined impurity. These results suggest that cancer procoagulant is a cysteine endopeptidase, which distinguishes it from other coagulation factors including tissue factor.
    [Show full text]
  • CHAPTER V General Discussion
    CHAPTER V General Discussion GENERAL DISCUSSION The cysteine endopeptidases represent one of the four classes of enzymes that act on peptide bonds of proteins and oligopeptides. Papain, the protogonist of the cysteine endopeptidases has been by far the most extensively studied of this class of enzymes. Most of the cysteine endopeptidases characterised so far show a high degree of similarity with regard to their physico-chemical properties, specificity and primary and secondary structures to papain, and are now recognised as papain superfamily. Rawlings and Barrett, (1993) have classified endopeptidases into different families based on the sequence homology and active site residues. They showed that there are 14 different families of cysteine endopeptidases and the papain family is the largest. In the absence of sequence data, kinetic parameters of inhibitor binding and knowledge of active site residues provides ample scope to classify endopeptidases at least into papain and nonpapain families. Hence, based on these information an attempt was made to classify the cysteine endopeptidases investigated in these studies. Vignain, legumain, glycylendopeptidase (papaya proteinase IV) and clostripain are activated in the presence of thiols and have a pH optimum of 5-7, a general characteristics for enzymes belonging to the cysteine class. The molecular weight of enzymes belonging to the papain family fall in the range of 23 kDa - 28 kDa with papain having a molecular weight of 23.35 kDa. Vignain (28 kDa) and glycylendopeptidase (25 kDa) have molecular weights in this range, whereas clostripain and legumain have a molecular weights of 58 kDa and 33 kDa, respectively, which are higher than that of papain.
    [Show full text]
  • Tesi Dottorato Ilaria Benucci
    Facoltà di Agraria, Dipartimento di Scienze e Tecnologie Agroalimentari (AGR/15) CORSO DI DOTTORATO DI RICERCA Biotecnologia Degli Alimenti - XXIII ciclo Removal of unstable proteins from white wine by immobilized acid protease Coordinatore: Prof. Marco Esti Firma Tutor: Prof. Marco Esti Firma Dottoranda: Ilaria Benucci Firma A Pierluigi ABSTRACT This PhD thesis research project was aimed at assessing and optimizing different immobilization procedures of pineapple stem bromelain, in order to develop an innovative biotechnological technique, alternative to bentonite fining, useful to removal selectively unstable proteins from white wines. Stem bromelain activity was assessed on a suitable synthetic substrate at a reference pH value (3.2), this being the average minimum pH value of wine. Protease was covalently immobilized on different supports by various procedures and the best biocatalyst was chosen measuring immobilization percentage, kinetic parameters and half-life (in model wine buffer). Moreover, the influence on free and immobilized protease activity of potential inhibitors naturally present in wine, such as ethanol, tannins and sulphur dioxide (SO 2) over the average range concentration of wine, was investigated. Finally a kinetic study was carried out using 6 artisan and unrefined white wines, spiced with the synthetic substrate, in order to compare catalytic properties of free and immobilized bromelain. Immobilized protease activity, then, was tested in these wines both on total proteins and on unstable ones. Covalent immobilization reduced bromelain catalytic properties. All kinds of procedures applied at pH 7 allowed the highest immobilization yield. Nevertheless, biocatalysts immobilized at pH 3.2 showed the best catalytic performance. Stem bromelain was successfully immobilized on chitosan beads without glutaraldehyde at pH 3.2, obtaining the most interesting and food-safe biocatalyst, which was used for all other experiments.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]