CHAPTER V General Discussion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enzymes Handling/Processing
Enzymes Handling/Processing 1 Identification of Petitioned Substance 2 3 This Technical Report addresses enzymes used in used in food processing (handling), which are 4 traditionally derived from various biological sources that include microorganisms (i.e., fungi and 5 bacteria), plants, and animals. Approximately 19 enzyme types are used in organic food processing, from 6 at least 72 different sources (e.g., strains of bacteria) (ETA, 2004). In this Technical Report, information is 7 provided about animal, microbial, and plant-derived enzymes generally, and more detailed information 8 is presented for at least one model enzyme in each group. 9 10 Enzymes Derived from Animal Sources: 11 Commonly used animal-derived enzymes include animal lipase, bovine liver catalase, egg white 12 lysozyme, pancreatin, pepsin, rennet, and trypsin. The model enzyme is rennet. Additional details are 13 also provided for egg white lysozyme. 14 15 Chemical Name: Trade Name: 16 Rennet (animal-derived) Rennet 17 18 Other Names: CAS Number: 19 Bovine rennet 9001-98-3 20 Rennin 25 21 Chymosin 26 Other Codes: 22 Prorennin 27 Enzyme Commission number: 3.4.23.4 23 Rennase 28 24 29 30 31 Chemical Name: CAS Number: 32 Peptidoglycan N-acetylmuramoylhydrolase 9001-63-2 33 34 Other Name: Other Codes: 35 Muramidase Enzyme Commission number: 3.2.1.17 36 37 Trade Name: 38 Egg white lysozyme 39 40 Enzymes Derived from Plant Sources: 41 Commonly used plant-derived enzymes include bromelain, papain, chinitase, plant-derived phytases, and 42 ficin. The model enzyme is bromelain. -
Biochemistry and the Genomic Revolution 1.1
Dedication About the authors Preface Tools and Techniques Clinical Applications Molecular Evolution Supplements Supporting Biochemistry, Fifth Edition Acknowledgments I. The Molecular Design of Life 1. Prelude: Biochemistry and the Genomic Revolution 1.1. DNA Illustrates the Relation between Form and Function 1.2. Biochemical Unity Underlies Biological Diversity 1.3. Chemical Bonds in Biochemistry 1.4. Biochemistry and Human Biology Appendix: Depicting Molecular Structures 2. Biochemical Evolution 2.1. Key Organic Molecules Are Used by Living Systems 2.2. Evolution Requires Reproduction, Variation, and Selective Pressure 2.3. Energy Transformations Are Necessary to Sustain Living Systems 2.4. Cells Can Respond to Changes in Their Environments Summary Problems Selected Readings 3. Protein Structure and Function 3.1. Proteins Are Built from a Repertoire of 20 Amino Acids 3.2. Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains 3.3. Secondary Structure: Polypeptide Chains Can Fold Into Regular Structures Such as the Alpha Helix, the Beta Sheet, and Turns and Loops 3.4. Tertiary Structure: Water-Soluble Proteins Fold Into Compact Structures with Nonpolar Cores 3.5. Quaternary Structure: Polypeptide Chains Can Assemble Into Multisubunit Structures 3.6. The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure Summary Appendix: Acid-Base Concepts Problems Selected Readings 4. Exploring Proteins 4.1. The Purification of Proteins Is an Essential First Step in Understanding Their Function 4.2. Amino Acid Sequences Can Be Determined by Automated Edman Degradation 4.3. Immunology Provides Important Techniques with Which to Investigate Proteins 4.4. Peptides Can Be Synthesized by Automated Solid-Phase Methods 4.5. -
Evidence for an Active-Center Cysteine in the SH-Proteinase Cu-Clostripain Through Use of IV-Tosyl-L-Lysine Chloromethyl Ketone
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 173, number 1 FEBS 1649 July 1984 Evidence for an active-center cysteine in the SH-proteinase cu-clostripain through use of IV-tosyl-L-lysine chloromethyl ketone A.-M. Gilles and B. Keil Unitt! de Chimie des Protknes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris CPdex 15, France Received 30 May 1984 The rapid reaction of a-clostripain with tosyl-L-lysine chloromethyl ketone results in a complete loss of activity and in the disappearance of one titratable SH group whereas the number of histidine residues is not affected. Tosyl-L-phenylalanine chloromethyl ketone and phenylmethylsulfonyl fluoride have no effect on the catalytic activity. From the molar ratio and under the assumption of 1: 1 molar interaction, the fully active enzyme has a specific activity of 650-700 units/mg [twice the value proposed by Porter et al. (J. Biol. Chem. 246 (1971) 76757682)]. Partial oxidation makes it experimentally impossible to attain this maximal value. ff-Clostripain Cysteine proteinase Active site 1. INTRODUCTION was due to the modification of a thiol group in an analogous way with other cysteine proteinases such Clostripain (EC 3.4.4.20) is a sulfhydryl protein- as papain [6] and ficin [7]. Recently [8], we eluci- ase isolated from the culture filtrate of Clostridium dated the amino acid sequence around this acces- histolyticum with a highly limited specificity sible thiol group after labelling with radioactive directed at the carboxyl bond of arginyl residues in iodoacetic acid. -
Helical Domain That Prevents Access to the Substrate-Binding Cleft
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Researchprovided Article by Elsevier1193 - Publisher Connector The prosequence of procaricain forms an a-helical domain that prevents access to the substrate-binding cleft Matthew R Groves, Mark AJ Taylor, Mandy Scott, Nicola J Cummings Richard W Pickersgill* and John A Jenkins* Background: Cysteine proteases are involved in a variety of cellular processes Address: Department of Food Macromolecular including cartilage degradation in arthritis, the progression of Alzheimer’s Science, Institute of Food Research, Earley Gate, disease and cancer invasion: these enzymes are therefore of immense biological Whiteknights Road, Reading, RG6 6BZ, UK. importance. Caricain is the most basic of the cysteine proteases found in the *Corresponding authors. latex of Carica papaya. It is a member of the papain superfamily and is E-mail: [email protected] homologous to other plant and animal cysteine proteases. Caricain is naturally [email protected] expressed as an inactive zymogen called procaricain. The inactive form of the Key words: caricain, cysteine protease, density protease contains an inhibitory proregion which consists of an additional 106 modification, X-ray structure, zymogen N-terminal amino acids; the proregion is removed upon activation. Received: 25 June 1996 Results: The crystal structure of procaricain has been refined to 3.2 Å Revisions requested: 23 July 1996 Revisions received: 12 August 1996 resolution; the final model consists of three non-crystallographically related Accepted: 28 August 1996 molecules. The proregion of caricain forms a separate globular domain which binds to the C-terminal domain of mature caricain. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations. -
The Proteolysis of Apolipoprotein E in Alzheimer's Disease
THE PROTEOLYSIS OF APOLIPOPROTEIN E IN ALZHEIMER’S DISEASE by Julia Love A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Boise State University August 2016 © 2016 Julia Love ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Julia Love Thesis Title: The Proteolysis of Apolipoprotein E in Alzheimer’s Disease Date of Final Oral Examination: 26 April 2016 The following individuals read and discussed the thesis submitted by student Julia Love, and they evaluated her presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Troy Rohn, Ph.D. Chair, Supervisory Committee Kenneth A. Cornell, Ph.D. Member, Supervisory Committee Juliette Tinker, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Troy Rohn, Ph.D., Chair of the Supervisory Committee. The thesis was approved for the Graduate College by Jodi Chilson, M.F.A., Coordinator of Theses and Dissertations. DEDICATION This thesis is dedicated to my parents Paul and Cynthia Love, my brother Philip Love, and all of my friends who have supported and encouraged me along the way. iv ACKNOWLEDGEMENTS There have been many people who have contributed to this work and my academic growth over the course of pursuing my Master’s degree. These individual contributions have not gone unnoticed and are an important part of my thesis work. First and foremost, I would like to thank Dr. Troy Rohn for being available with a willing attitude whenever I needed assistance, for his steadfast support and care, and for providing me with every opportunity to exceed what I thought were my limitations. -
Food Proteins Are a Potential Resource for Mining
Hypothesis Article: Food Proteins are a Potential Resource for Mining Cathepsin L Inhibitory Drugs to Combat SARS-CoV-2 Ashkan Madadlou1 1Wageningen Universiteit en Research July 20, 2020 Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. Food protein-derived peptides might also show cathepsin L inhibitory activity. Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lyso- somal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. -
Molecular Insights Into Bromelain Application in Industry and Health Care
Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 15 (2020) Pp-36-46 Molecular Insights into Bromelain Application in Industry and Health Care Sushma S. Murthy and T. Bala Narsaiah 1Research Scholar, Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India 2Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India ABSTRACT Bromelain is a cysteine protease derived from the stem and fruit of the pineapple. It has a significant role in pharmacological and clinical applications. Studies have shown Bromelain to be a potent photoactive compound that has a wide application in industry. It has also been shown to be effective in treatment of cancer, inflammation, and allergies. It has a distinct immunomodulatory activity which forms an important strategy in its utilization as a therapeutic agent. Bromelain plays a significant role at molecular level by regulating the expression of proteins that are potential therapeutic targets. Bromelain is used extensively worldwide as an herbal medicine as it promises good efficacy and has no side effects. This paper reviews the general characteristics of Bromelain, its separation process, and its use in industries and healthcare as a therapeutic agent. The present review identifies that there is lack of knowledge pertaining to the mode of action of Bromelain in inhibiting transcriptional factors and in controlling cancer. An in-detail analysis in this area might help in expanding the therapeutic scope of Bromelain. KEY WORDS: BROMELAIN, CANCER, PHARMacOLOGICAL actiVITY, SEpaRatiON, TRANSCRIPTION FactORS. INTRODUCTION because of its wide benefits to the human system. The stem part of the plant, which is inexpensive and is usually The Bromelain protease is isolated from the stem and discarded, has a high concentration of bromelain and fruit of Pineapple (Ananas comosus,). -
Deficiency for the Cysteine Protease Cathepsin L Promotes Tumor
Oncogene (2010) 29, 1611–1621 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis J Dennema¨rker1,6, T Lohmu¨ller1,6, J Mayerle2, M Tacke1, MM Lerch2, LM Coussens3,4, C Peters1,5 and T Reinheckel1,5 1Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany; 2Department of Gastroenterology, Endocrinology and Nutrition, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany; 3Department of Pathology, University of California, San Francisco, CA, USA; 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA and 5Ludwig Heilmeyer Comprehensive Cancer Center and Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany To define a functional role for the endosomal/lysosomal Introduction cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Proteases have traditionally been thought to promote Ctsl deficiency in addition to epithelial expression of the invasive growth of carcinomas, contributing to the the human papillomavirus type 16 oncogenes (human spread and homing of metastasizing cancer cells (Dano cytokeratin 14 (K14)–HPV16). We found enhanced tumor et al., 1999). Proteases that function outside tumor cells progression and metastasis in the absence of Ctsl. As have been implicated in these processes because of their tumor progression in K14–HPV16 mice is dependent well-established release from tumors, causing the break- on inflammation and angiogenesis, we examined immune down of basement membranes and extracellular matrix. cell infiltration and vascularization without finding any Thus, extracellular proteases may in part facilitate effect of the Ctsl genotype. -
Peptidoglycan Crosslinking Relaxation Plays An
Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, Sarah Dubrac To cite this version: Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, et al.. Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Vi- ability. PLoS ONE, Public Library of Science, 2011, 6 (2), pp.e17054. 10.1371/journal.pone.0017054. pasteur-02870016 HAL Id: pasteur-02870016 https://hal-pasteur.archives-ouvertes.fr/pasteur-02870016 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR- Dependent Cell Viability Aurelia Delaune1,2, Olivier Poupel1,2, Adeline Mallet3, Yves-Marie Coic4,5, Tarek Msadek1,2*, Sarah Dubrac1,2 1 Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France, 2 CNRS, URA 2172, Paris, France, 3 Institut Pasteur, Ultrastructural Microscopy Platform, Imagopole, Paris, France, 4 Institut Pasteur, Chemistry of Biomolecules, Department of Structural Biology and Chemistry, Paris, France, 5 CNRS, URA 2128, Paris, France Abstract The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. -
Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1