CHAPTER 7 Clinical Microbiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization and Antibiotic Sensitivity Profile of Bacteria Isolated from Patients with Respiratory Tract Infections in Bangladesh
Characterization and Antibiotic Sensitivity Profile of Bacteria Isolated from Patients with Respiratory Tract Infections in Bangladesh Shukla Promite1, Sajal K. Saha2, Sunjukta Ahsan1 and Marufa Zerin Akhter1 1Department of Microbiology, University of Dhaka, Dhaka, Bangladesh 2Department of General Practice, Monash University, Building 1, 270 Ferntree Gully Road, Notting Hill VIC 3168, Australia (Received: October 08, 2017; Accepted: December 15, 2017; Published (web): December 23, 2017) ABSTRACT: The study was aimed to characterize bacterial isolates from respiratory tract infections (RTI) and investigate their antibiotic sensitivity profile. Selective media and biochemical tests were used to characterize 40 bacterial isolates. Antibiotic sensitivity testing was conducted using Kirby-Bauer disc diffusion method. About 42.5% (17) RTI patients were infected by Klebsiella pneumoniae, 30% (12) by Escherichia coli and 27.5% (11) by Pseudomonas aeruginosa with no significant gender variation (p-value <0.578). Overall, 47% (out of 20) antibiotics were sensitive, whereas 48% were resistant. Surprisingly, 18% P. aeruginosa and 20% K. pneumoniae were carbapenem-resistant and 4 out of 7 cephalosporin antibiotics were highly resistant irrespective of pathogens. E. coli showed better sensitivity to nitrofurantoin (78%) and levofloxacin (89%), while K. pneumoniae was insensitive to cotrimoxazole (88%), gentamycin (77%) and piperacillin/tazobactam (66%). On the other hand, P. aeruginosa did not respond to P. aeruginosa to nalidixic acid (60%) and ciprofloxacin (60%). This study concludes that nitrofurantoin, levofloxacin, cotrimoxazole, gentamycin and piperacillin/tazobactam antibiotics could be better alternative in treating bacterial RTIs. Key words: Antibiotic sensitivity, bacterial pathogens, RTIs, Bangladesh. INTRODUCTION Antibiotic resistance (AR) is a global public The rise of AR in Bangladesh is probably due to 1 health concern. -
Compendium of Measures to Control Chlamydia Psittaci Infection Among
Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017 Author(s): Gary Balsamo, DVM, MPH&TMCo-chair Angela M. Maxted, DVM, MS, PhD, Dipl ACVPM Joanne W. Midla, VMD, MPH, Dipl ACVPM Julia M. Murphy, DVM, MS, Dipl ACVPMCo-chair Ron Wohrle, DVM Thomas M. Edling, DVM, MSpVM, MPH (Pet Industry Joint Advisory Council) Pilar H. Fish, DVM (American Association of Zoo Veterinarians) Keven Flammer, DVM, Dipl ABVP (Avian) (Association of Avian Veterinarians) Denise Hyde, PharmD, RP Preeta K. Kutty, MD, MPH Miwako Kobayashi, MD, MPH Bettina Helm, DVM, MPH Brit Oiulfstad, DVM, MPH (Council of State and Territorial Epidemiologists) Branson W. Ritchie, DVM, MS, PhD, Dipl ABVP, Dipl ECZM (Avian) Mary Grace Stobierski, DVM, MPH, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Karen Ehnert, and DVM, MPVM, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Thomas N. Tully JrDVM, MS, Dipl ABVP (Avian), Dipl ECZM (Avian) (Association of Avian Veterinarians) Source: Journal of Avian Medicine and Surgery, 31(3):262-282. Published By: Association of Avian Veterinarians https://doi.org/10.1647/217-265 URL: http://www.bioone.org/doi/full/10.1647/217-265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. -
Introduction to Bacteriology and Bacterial Structure/Function
INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century. -
Chlamydophila Felis Prevalence Chlamydophila Felis Prevalence
ORIGINAL SCIENTIFIC ARTICLE / IZVORNI ZNANSTVENI ČLANAK A preliminary study of Chlamydophila felis prevalence among domestic cats in the City of Zagreb and Zagreb County in Croatia Gordana Gregurić Gračner*, Ksenija Vlahović, Alenka Dovč, Brigita Slavec, Ljiljana Bedrica, S. Žužul and D. Gračner Introduction Feline chlamydiosis is a disease in do- Rampazzo et al. (2003) investigated mestic cats caused by Chlamydophila felis the prevalence of Cp. felis and feline (Cp. felis), which is primarily a pathogen herpesvirus in cats with conjunctivitis by of the conjunctiva and nasal mucosa using a conventional polymerase chain rather than a pulmonary pathogen. It is reaction (PCR), and discovered that 14 capable of causing acute to chronic con- out of 70 (20%) cats with conjunctivitis junctivitis, with blepharospasm, chem- were positive only on Cp. felis and mixed osis and congestion, a serous to mucop- infections with herpesvirus were present urulent ocular discharge, and rhinitis in 5 of 70 (7%) cats. (Hoover et al., 1978; Sykes, 2005). C. Helps et al. (2005) took oropharyngeal 1 psittaci infection in kittens produces fe- and conjunctival swabs from 1101 cats ver, lethargy, lameness, and reduction and by using a PCR determined Cp. felis in weight gain (Terwee at al., 1998). Ac- in 10% of the 558 swab samples of cats cording to the literature, chlamydiosis with URDT and in 3% of the 558 swab in cats can be treated successfully by samples of cats without URDT. administering potentiated amoxicillin Low et al. (2007) investigated 55 cats for 30 days, which can result in a com- with conjunctivitis, 39 healthy cats and plete clinical recovery with no evidence 32 cats with a history of conjunctivitis of a recurrence for six months (Sturgess that been resolved for at least 3 months. -
Catalase Test: Lab-3380
Standard Operating Procedure Subject Catalase Test Index Number Lab-3380 Section Laboratory Subsection Microbiology Category Departmental Contact Sarah Stoner Last Revised 9/18/2019 References Required document for Laboratory Accreditation by the College of American Pathologists (CAP), Centers for Medicare and Medicaid Services (CMS) and/or COLA. Applicable To Employees of Gundersen Health System Laboratory, Gundersen Tri-County, Gundersen St. Joseph, Gundersen Boscobel Hospital, and Gundersen Palmer Lutheran Hospital Laboratories. Detail PRINCIPLE: The breakdown of hydrogen peroxide into oxygen and water is mediated by the enzyme catalase. When a small amount of an organism that produces catalase is introduced into hydrogen peroxide, rapid elaboration of bubbles of oxygen, the gaseous product of the enzyme’s activity, is produced. CLINICAL SIGNIFICANCE: This test is used as an aid in distinguishing between Staphylococci and Streptococci. All members of the genus Staphylococcus are catalase (+), where as members of the genus Streptococcus are catalase (-). Listeria monocytogenes {catalase (+)} can be distinguished from beta-hemolytic streptococcus {catalase (-)}. Most Neisseria sp. are catalase (+). Catalase can also help distinguish Bacillus sp. {catalase (+)} from Clostridum sp. {mostly catalase (-)}. SPECIMEN: Isolates preferably grown on non-blood containing media not older than 24 hours old. REAGENTS AND MATERIALS: 1. 3% hydrogen peroxide (from stock bottle). Store 2o – 25o C. Do not freeze or overheat. Light sensitive, store in brown bottle. 2. Clean microscope slide or glass test tube 3. Wooden applicator stick EQUIPMENT/INSTRUMENTATION: N/A QUALITY CONTROL: Each new lot and shipment or once a month, perform QC on reagent with stock organisms of S aureus (positive) and Beta strep group A (negative). -
Asymptomatic Bacteriuria Amongst the Inhabitants of Okigwe, Imo State Nigeria
Nigerian Journal of Microbiology, Vol. 22(1): 16 30 – 1633 2008 Asymptomatic Bacteriuria Amongst the Inhabitants of Okigwe, Imo State Nigeria *Ugbogu, O.C and Enya, V. N Department of Microbiology, Abia State University, Uturu, Nigeria. Abstract The prevalence of asymptomatic bacteriuria amongst the inhabitants of Okigwe was investigated using culture techniques. The predominant bacteria isolated were Escherichia coli , Staphylococcus aureus , Klebsiella species, Pseudomonas aeruginosa and Proteus species. Out of the 120 urine samples examined 20.8% had asymptomatic bacteriuria. The percentage prevalence was 17.7% and 22.5% for males and females examined respectively. Escherichia coli was the most prevalent occurring in 18.2% of the samples while Klebsiella species and Proteus species that both occurred in 5% of the positive samples were the least. Traders were more affected than students and civil servants. There is need to encourage people to screen for asymptomatic bacteriuria in other to avert the consequences of the subsequent complications. Keywords: bacteriuria, occupation, prevalence, symptom. *Corresponding author; E-mail; [email protected] phone 07084159395 Introduction Materials and methods Normally urine and the urinary tract Population studied : above the entrance to the bladder are essentially The population for this study was a free of microorganisms (Nester et al ., 2004). randomly selected group of 120 aparently Bacteriuria is a condition in which bacteria are healthy individuals that were either students, present in urine. Asymptomatic bacteriuria is traders or civil servants in Okigwe. The study defined as significant bacteriuria when growth of population were of various age groups ranging ≥ 10 5 cfu/ml of freshly voided urine (Umeh et from 16 to 45 years. -
Phylogenomic Networks Reveal Limited Phylogenetic Range of Lateral Gene Transfer by Transduction
The ISME Journal (2017) 11, 543–554 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction Ovidiu Popa1, Giddy Landan and Tal Dagan Institute of General Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany Bacteriophages are recognized DNA vectors and transduction is considered as a common mechanism of lateral gene transfer (LGT) during microbial evolution. Anecdotal events of phage- mediated gene transfer were studied extensively, however, a coherent evolutionary viewpoint of LGT by transduction, its extent and characteristics, is still lacking. Here we report a large-scale evolutionary reconstruction of transduction events in 3982 genomes. We inferred 17 158 recent transduction events linking donors, phages and recipients into a phylogenomic transduction network view. We find that LGT by transduction is mostly restricted to closely related donors and recipients. Furthermore, a substantial number of the transduction events (9%) are best described as gene duplications that are mediated by mobile DNA vectors. We propose to distinguish this type of paralogy by the term autology. A comparison of donor and recipient genomes revealed that genome similarity is a superior predictor of species connectivity in the network in comparison to common habitat. This indicates that genetic similarity, rather than ecological opportunity, is a driver of successful transduction during microbial evolution. A striking difference in the connectivity pattern of donors and recipients shows that while lysogenic interactions are highly species-specific, the host range for lytic phage infections can be much wider, serving to connect dense clusters of closely related species. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
CAMP Tests (Standard and Rapid) and Reverse CAMP Test
M.V.Sc. (Veterinary Microbiology), Monsoon semester Date 31.12.2020 VMC- 602 (Bacteriology II), Unit III, Practical class CAMP Tests (Standard and Rapid) and Reverse CAMP test Dr. Savita Kumari Assistant Professor-cum-Jr. Scientist Department of Veterinary Microbiology Bihar Veterinary College, BASU, Patna CAMP factor S. agalactiae contains the CAMP factor, only beta-hemolytic Streptococcus secretes Pore -forming toxin first identified in this bacterium CAMP reaction is based on the co -hemolytic activity of the CAMP factor Commonly used to identify S. agalactiae Closely related proteins present also in other Gram - positive pathogens cfb gene encodes CAMP factor CAMP test CAMP reaction- consists in a zone of strong hemolysis that is observed when S. agalactiae is streaked next to Staphylococcus aureus on blood agar S. aureus secretes sphingomyelinase Sheep red blood cells - rich in sphingomyelin, and upon exposure to sphingomyelinase become greatly sensitized to CAMP factor, which then effects hemolysis Hemolysis most pronounced in the zone between the colonies of the two bacterial species Co-hemolytic phenomenon- presumptive identification of Group B Streptococci (S. agalactiae) CAMP test First described by Christie, Atkins, and Munch –Petersen in 1944 The protein was named CAMP factor for the initials of the authors of the article that first described the phenomenon Types: Standard CAMP test Rapid CAMP test (spot test ) Standard camp test are time consuming and/or expensive compared to the CAMP spot test Principle CAMP test detects -
Mass Spectrometry-Based Microbiological Testing for Blood
Nomura et al. Clin Proteom (2020) 17:14 https://doi.org/10.1186/s12014-020-09278-7 Clinical Proteomics REVIEW Open Access Mass spectrometry-based microbiological testing for blood stream infection Fumio Nomura1* , Sachio Tsuchida1, Syota Murata2, Mamoru Satoh1 and Kazuyuki Matsushita2 Abstract Background: The most successful application of mass spectrometry (MS) in laboratory medicine is identifcation (ID) of microorganisms using matrix-assisted laser desorption ionization–time of fight mass spectrometry (MALDI-TOF MS) in blood stream infection. We describe MALDI-TOF MS-based bacterial ID with particular emphasis on the methods so far developed to directly identify microorganisms from positive blood culture bottles with MALDI-TOF MS including our own protocols. We touch upon the increasing roles of Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) as well. Main body: Because blood culture bottles contain a variety of nonbacterial proteins that may interfere with analysis and interpretation, appropriate pretreatments are prerequisites for successful ID. Pretreatments include purifcation of bacterial pellets and short-term subcultures to form microcolonies prior to MALDI-TOF MS analysis. Three commercial protocols are currently available: the Sepsityper® kit (Bruker Daltonics), the Vitek MS blood culture kit (bioMerieux, Inc.), and the rapid BACpro® II kit (Nittobo Medical Co., Tokyo). Because these commercially available kits are costly and bacterial ID rates using these kits are not satisfactory, particularly for Gram-positive bacteria, various home-brew protocols have been developed: 1. Stepwise diferential sedimentation of blood cells and microorganisms, 2. Combi- nation of centrifugation and lysis procedures, 3. Lysis-vacuum fltration, and 4. Centrifugation and membrane fltra- tion technique (CMFT). -
Product Description EN Bactoreal® Kit Chlamydiaceae
Product Description BactoReal® Kit Chlamydiaceae For research only, not for diagnostic use BactoReal® Kit Chlamydiaceae Order no. Reactions Pathogen Internal positive control DVEB03113 100 FAM channel Cy5 channel DVEB03153 50 FAM channel Cy5 channel DVEB03111 100 FAM channel VIC/HEX channel DVEB03151 50 FAM channel VIC/HEX channel Kit contents: Detection assay for Chlamydia and Chlamydophila species Detection assay for internal positive control (control of amplification) DNA reaction mix (contains uracil-N glycosylase, UNG) Positive control for Chlamydiaceae Water Background: The Chlamydiaceae family currently includes two genera and one candidate genus: genus Chlamydia (including the species Chlamydia muridarum, Chlamydia suis, Chlamydia trachomatis), genus Chlamydophila (including the species Chlamydophila abortus, Chlamydophila caviae Chlamydophila felis, Chlamydia pecorum, Chlamydophila pneumoniae, Chlamydophila psittaci), and candidatus Clavochlamydia. All Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause diseases in humans and animals worldwide. Description: BactoReal® Kit Chlamydiaceae is based on the amplification and detection of the 23S rRNA gene of C. muridarum, C. suis, C. trachomatis, C. abortus, C. caviae, C. felis, C. pecorum, C. pneumoniae and C. psittaci using real-time PCR. It allows the rapid and sensitive detection of the 23S rRNA gene of Chlamydiaceae from DNA samples purified from different sample material (e.g. with the QIAamp DNA Mini Kit). For subtyping please contact ingenetix. PCR-platforms: BactoReal® Kit Chlamydiaceae is developed and validated for the ABI PRISM® 7500 instrument (Life Technologies), LightCycler® 480 (Roche) and Mx3005P® QPCR System (Agilent), but is also suitable for other real-time PCR instruments. Sensitivity and specificity: BactoReal® Kit Chlamydiaceae detects at least 10 copies/reaction. -
Assessing Lyme Disease Relevant Antibiotics Through Gut Bacteroides Panels
Assessing Lyme Disease Relevant Antibiotics through Gut Bacteroides Panels by Sohum Sheth Abstract: Lyme borreliosis is the most prevalent vector-borne disease in the United States caused by the transmission of bacteria Borrelia burgdorferi harbored by the Ixodus scapularis ticks (Sharma, Brown, Matluck, Hu, & Lewis, 2015). Antibiotics currently used to treat Lyme disease include oral doxycycline, amoxicillin, and ce!riaxone. Although the current treatment is e"ective in most cases, there is need for the development of new antibiotics against Lyme disease, as the treatment does not work in 10-20% of the population for unknown reasons (X. Wu et al., 2018). Use of antibiotics in the treatment of various diseases such as Lyme disease is essential; however, the downside is the development of resistance and possibly deleterious e"ects on the human gut microbiota composition. Like other organs in the body, gut microbiota play an essential role in the health and disease state of the body (Ianiro, Tilg, & Gasbarrini, 2016). Of importance in the microbiome is the genus Bacteroides, which accounts for roughly one-third of gut microbiome composition (H. M. Wexler, 2007). $e purpose of this study is to investigate how antibiotics currently used for the treatment of Lyme disease in%uences the Bacteroides cultures in vitro and compare it with a new antibiotic (antibiotic X) identi&ed in the laboratory to be e"ective against B. burgdorferi. Using microdilution broth assay, minimum inhibitory concentration (MIC) was tested against nine di"erent strains of Bacteroides. Results showed that antibiotic X has a higher MIC against Bacteroides when compared to amoxicillin, ce!riaxone, and doxycycline, making it a promising new drug for further investigation and in vivo studies.