An Analysis of Human Cytomegalovirus Gene Family Function

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of Human Cytomegalovirus Gene Family Function An Analysis of Human Cytomegalovirus Gene Family Function A thesis submitted in candidature for the degree of DOCTOR OF PHILOSOPHY by Hester Amy Nichols September 2018 Division of Infection and Immunity, School of Medicine, Cardiff University Declarations This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed…......................................................... (candidate) Date................................ STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD Signed…......................................................... (candidate) Date................................ STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated, and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by explicit references. The views expressed are my own. Signed…......................................................... (candidate) Date................................ STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed…......................................................... (candidate) Date................................ STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access repository and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed…......................................................... (candidate) Date................................ i Acknowledgements I would firstly like to express my gratitude to my supervisors, Dr Ceri Fielding and Prof. Gavin Wilkinson for giving me the opportunity to do a PhD, and for their support, guidance, valued insights and patience throughout, alongside their support of me attending conferences to further my professional and personal development. I would also like to thank my supervisor Dr Peter Tomasec who sadly passed away last year. I am also grateful to Dawn Roberts for her technical support, and would like to thank everyone within the Wilkinson lab, for their help in the lab and their valuable input within team meetings. I would especially like to thank everyone in the lab and the PhD students in the building for their friendship over the last 3 years, and for making the lab such an enjoyable workplace. I would especially like to thank Simone Forbes for her constant enthusiasm and encouragement throughout my writing up period; and Carmen Bedford who I was lucky enough to meet at the start of my Cardiff adventure and continue my PhD journey with, and who has kept me sane with multiple cups of tea and chick flicks over the years. I would also like to thank my funding body, the Medical Research Council (MRC), and our collaborators in Glasgow (in the laboratory of Dr Andrew Davison, MRC-University of Glasgow Centre for Virus Research) and in Cambridge (in the laboratory of Dr Paul Lehner, Cambridge Institute for Medical Research) for their help with my project. Finally, I would like to thank my boyfriend Jason Vincent and my family, especially my mum, dad and sister, for supporting me and believing in me throughout my PhD studies. I couldn’t have gotten through it without you all! ii Summary Human cytomegalovirus (HCMV) is a β-herpesvirus that causes complications in immuno- compromised individuals and is the leading infectious cause of birth defects. The HCMV genome contains 15 gene families, which contain between 2 to 14 members. One of these, the US12 gene family, consists of a sequential cluster of 10 genes (US12 to US21) that are highly conserved in clinical isolates. This family has roles in tropism and immune evasion and was recently found to regulate the cell surface expression of a wide array of immune ligands. This included the regulation of ligands for the natural killer (NK) cell activating receptors NKG2D and NKp30 (MICA and B7-H6 respectively), which were targeted by US18 and US20. To complement these mechanistic studies, a C-terminal V5 epitope tag was added to each US12 family gene within the HCMV Merlin genome. A large proportion of the US12 family were shown to be degraded within the cell, possibly within lysosomes, which suggests that they may interact with their targets proteins in order to redirect them for degradation. Expression of US12 family members was detectable by immunoblotting during an infection time-course, with many US12 family members expressed during the Tp3 temporal class of HCMV gene expression. Three members of the family were also demonstrated to be N-glycosylated during HCMV infection. The US12 family appear to have associations with the virion assembly compartment, and correspondingly, 7 US12 family members are found within the virion. Furthermore, the majority of the US12 family also show co-localisation with endoplasmic reticulum-derived membranes. These data build on our previous functional characterisation to give insights into the workings of this important HCMV gene family. iii Table of Contents Declarations .............................................................................................................................. i Acknowledgements .................................................................................................................. ii Summary ................................................................................................................................. iii List of Figures .......................................................................................................................... ix List of Tables ............................................................................................................................ x Abbreviations ........................................................................................................................ xiii 1 Introduction .......................................................................................................................... 1 1.1 Herpesviruses ................................................................................................................. 2 1.2 Human Cytomegalovirus (HCMV) .................................................................................. 6 1.3 HCMV Genome .............................................................................................................. 9 1.3.1 HCMV strains ......................................................................................................... 10 1.4 HCMV Life Cycle ........................................................................................................... 16 1.4.1 HCMV Productive Lytic Infection .......................................................................... 16 1.4.1.1 Tropism .......................................................................................................... 16 1.4.1.2 HCMV Entry .................................................................................................... 18 1.4.1.3 Nuclear Transport .......................................................................................... 20 1.4.1.4 Viral Gene Expression .................................................................................... 20 1.4.1.5 Viral DNA Replication ..................................................................................... 24 1.4.1.6 Virus Assembly and Structure ........................................................................ 25 1.4.1.7 Final Envelopment ......................................................................................... 30 1.4.1.8 Virion Egress ................................................................................................... 31 1.4.2 HCMV Latent Infection and Reactivation .............................................................. 31 1.5 HCMV Clinical disease .................................................................................................. 33 1.5.1 Transplant patients ............................................................................................... 34 1.5.2 HIV/AIDs patients .................................................................................................. 35 1.5.3 Congenital infection .............................................................................................. 35 1.5.4 Other at-risk groups .............................................................................................. 36 1.6 HCMV Antiviral Treatments and Vaccines ................................................................... 36 1.6.1 Antiviral treatments .............................................................................................. 36 1.6.2 Vaccines ................................................................................................................ 38 1.6.2.1 Attenuated HCMV vaccines ........................................................................... 39 1.6.2.2 Subunit antigen vaccines ............................................................................... 40 1.6.2.3 Virus like
Recommended publications
  • Fish Herpesvirus Diseases
    ACTA VET. BRNO 2012, 81: 383–389; doi:10.2754/avb201281040383 Fish herpesvirus diseases: a short review of current knowledge Agnieszka Lepa, Andrzej Krzysztof Siwicki Inland Fisheries Institute, Department of Fish Pathology and Immunology, Olsztyn, Poland Received March 19, 2012 Accepted July 16, 2012 Abstract Fish herpesviruses can cause significant economic losses in aquaculture, and some of these viruses are oncogenic. The virion morphology and genome organization of fish herpesviruses are generally similar to those of higher vertebrates, but the phylogenetic connections between herpesvirus families are tenuous. In accordance with new taxonomy, fish herpesviruses belong to the family Alloherpesviridae in the order Herpesvirales. Fish herpesviruses can induce diseases ranging from mild, inapparent infections to serious ones that cause mass mortality. The aim of this work was to summarize the present knowledge about fish herpesvirus diseases. Alloherpesviridae, CyHV-3, CyHV-2, CyHV-1, IcHV-1, AngHV-1 Herpesviruses comprise a numerous group of large DNA viruses with common virion structure and biological properties (McGeoch et al. 2008; Mattenleiter et al. 2008). They are host-specific pathogens. Apart from three herpesviruses found recently in invertebrate species, all known herpesviruses infect vertebrates, from fish to mammals (Davison et al. 2005a; Savin et al. 2010). According to a new classification accepted by the International Committee on Taxonomy of Viruses (http:/ictvonline.org), all herpesviruses have been incorporated into a new order named Herpesvirales, which has been split into three families. The revised family Herpesviridae contains mammalian, avian, and reptilian viruses; the newly-created family Alloherpesviridae contains herpesviruses of fish and amphibians, and the new family Malacoherpesviridae comprises single invertebrate herpesvirus (Ostreid herpesvirus).
    [Show full text]
  • 4-6 Moltraq-Khv
    8/28/2015 Molecular tracing of koi herpesvirus (KHV) / Cyprinid herpesviruses 3 (CyHV-3) 19th Annual Workshop NRL Fish Diseases Sven M. Bergmann May 27th – 28th 2015 in cooperation with Michael Cieslak, Heike Schütze, at DTU Copenhagen Saliha Hammoumi* and Jean-Christophe Avarre* * © Dr. habil. Sven M. Bergmann Cyprind herpesviruses Species of Cyprinivirus Order: Herpesvirales Cyprinid herpesvirus 1 (CyHV-1, carp pox virus) DD Family: Alloherpesviridae (Herpesviridae, Malacoherpesviridae) Cyprinid herpesvirus 2 (CyHV-2, goldfish herpesvirus) DD Cyprinid herpesvirus 3 (CyHV-3, koi herpesvirus) Genera: Batrachiovirus Ictalurivirus Salmonivirus Cyprinivirus Angullid herpesvirus 1 (AnghV-1, eel herpesvirus) © Dr. habil. Sven M. Bergmann © Dr. habil. Sven M. Bergmann Cyprinid herpesvirus 1 (CyHV-1, carp pox virus) The agent carp pox virus „Carp pox“ or „Fish Pox“ or „Epithelioma papillosum“ or „Carp Epithelioma“ - skin disease of cyprinids (carps and minnows) - milky-white to grey tumors - ds DNA genome - juvenile fish with a high mortality - size 291,144 bp - lesions usually develop in low temperatures (winter/spring) and - 143 ORFs (??? proteins) regress with high temperatures (summer) but the latent infection - obviously epitheliotropic (latency or persistence) - pathogenesis is partly unknown - The virus and the disease is present in most European countries. Steinhagen et al. 1992 © Dr. habil. Sven M. Bergmann © Dr. habil. Sven M. Bergmann 1 8/28/2015 Bream (Abramis barma, CEFAS 1994) golden ide carp goldfish © Dr. habil. Sven M. Bergmann
    [Show full text]
  • The Role of Viral Glycoproteins and Tegument Proteins in Herpes
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment Dmitry Vladimirovich Chouljenko Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Chouljenko, Dmitry Vladimirovich, "The Role of Viral Glycoproteins and Tegument Proteins in Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment" (2014). LSU Doctoral Dissertations. 4076. https://digitalcommons.lsu.edu/gradschool_dissertations/4076 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE ROLE OF VIRAL GLYCOPROTEINS AND TEGUMENT PROTEINS IN HERPES SIMPLEX VIRUS TYPE 1 CYTOPLASMIC VIRION ENVELOPMENT A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Dmitry V. Chouljenko B.Sc., Louisiana State University, 2006 August 2014 ACKNOWLEDGMENTS First and foremost, I would like to thank my parents for their unwavering support and for helping to cultivate in me from an early age a curiosity about the natural world that would directly lead to my interest in science. I would like to express my gratitude to all of the current and former members of the Kousoulas laboratory who provided valuable advice and insights during my tenure here, as well as the members of GeneLab for their assistance in DNA sequencing.
    [Show full text]
  • Genomes of Anguillid Herpesvirus 1 Strains Reveal Evolutionary Disparities and Low Genetic Diversity in the Genus Cyprinivirus
    microorganisms Article Genomes of Anguillid Herpesvirus 1 Strains Reveal Evolutionary Disparities and Low Genetic Diversity in the Genus Cyprinivirus Owen Donohoe 1,2,†, Haiyan Zhang 1,†, Natacha Delrez 1,† , Yuan Gao 1, Nicolás M. Suárez 3, Andrew J. Davison 3 and Alain Vanderplasschen 1,* 1 Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; [email protected] (O.D.); [email protected] (H.Z.); [email protected] (N.D.); [email protected] (Y.G.) 2 Bioscience Research Institute, Athlone Institute of Technology, Athlone, Co. N37 HD68 Westmeath, Ireland 3 MRC-Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; [email protected] (N.M.S.); [email protected] (A.J.D.) * Correspondence: [email protected]; Tel.: +32-4-366-42-64; Fax: +32-4-366-42-61 † These first authors contributed equally. Abstract: Anguillid herpesvirus 1 (AngHV-1) is a pathogen of eels and a member of the genus Cyprinivirus in the family Alloherpesviridae. We have compared the biological and genomic fea- tures of different AngHV-1 strains, focusing on their growth kinetics in vitro and genetic content, diversity, and recombination. Comparisons based on three core genes conserved among alloher- Citation: Donohoe, O.; Zhang, H.; pesviruses revealed that AngHV-1 exhibits a slower rate of change and less positive selection than Delrez, N.; Gao, Y.; Suárez, N.M.; other cypriniviruses. We propose that this may be linked to major differences in host species and Davison, A.J.; Vanderplasschen, A.
    [Show full text]
  • Human Cytomegalovirus Reprograms the Expression of Host Micro-Rnas Whose Target Networks Are Required for Viral Replication: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2013-08-26 Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation Alexander N. Lagadinos University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Immunology and Infectious Disease Commons, Molecular Genetics Commons, and the Virology Commons Repository Citation Lagadinos AN. (2013). Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2R88R. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/683 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. HUMAN CYTOMEGALOVIRUS REPROGRAMS THE EXPRESSION OF HOST MICRO-RNAS WHOSE TARGET NETWORKS ARE REQUIRED FOR VIRAL REPLICATION A Dissertation Presented By Alexander Nicholas Lagadinos Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 26th, 2013 Program in Immunology and Virology
    [Show full text]
  • Supporting Information
    Supporting Information Wu et al. 10.1073/pnas.0905115106 20 15 10 5 0 10 15 20 25 30 35 40 Fig. S1. HGT cutoff and tree topology. Robinson-Foulds (RF) distance [Robinson DF, Foulds LR (1981) Math Biosci 53:131–147] between viral proteome trees with different horizontal gene transfer (HGT) cutoffs h at feature length 8. Tree distances are between h and h-1. The tree topology remains stable for h in the range 13–31. We use h ϭ 20 in this work. Wu et al. www.pnas.org/cgi/content/short/0905115106 1of6 20 18 16 14 12 10 8 6 0.0/0.5 0.5/0.7 0.7/0.9 0.9/1.1 1.1/1.3 1.3/1.5 Fig. S2. Low complexity features and tree topology. Robinson-Foulds (RF) distance between viral proteome trees with different low-complexity cutoffs K2 for feature length 8 and HGT cutoff 20. The tree topology changes least for K2 ϭ 0.9, 1.1 and 1.3. We choose K2 ϭ 1.1 for this study. Wu et al. www.pnas.org/cgi/content/short/0905115106 2of6 Table S1. Distribution of the 164 inter-viral-family HGT instances bro hr RR2 RR1 IL-10 Ubi TS Photol. Total Baculo 45 1 10 9 11 1 77 Asco 11 7 1 19 Nudi 1 1 1 3 SGHV 1 1 2 Nima 1 1 2 Herpes 48 12 Pox 18 8 2 3 1 3 35 Irido 1 1 2 4 Phyco 2 3 2 1 8 Allo 1 1 2 Total 56 8 35 24 6 17 14 4 164 The HGT cutoff is 20 8-mers.
    [Show full text]
  • Ladies and Gentlemen
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library 1 Isolation and characterization of an atypical Siberian sturgeon herpesvirus (SbSHV) 2 strain in Russia: novel North-American Acipenserid herpesvirus 2 strain in Europe? 3 4 Andor Doszpoly1, Ismail M. Kalabekov2, Rachel Breyta3, Igor S. Shchelkunov2 5 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian 6 Academy of Sciences, Budapest, Hungary 7 2All Russia Research Institute for Veterinary Virology and Microbiology, Pokrov, Russia 8 3Cary Institute for Ecosystem Studies, Millbrook, New York, USA 9 10 11 12 13 14 Key words: Alloherpesviridae, Ictalurivirus, Acipenserid herpesvirus 2, Siberian sturgeon 15 16 17 18 19 The GenBank accession numbers of the sequences reported in this paper are KT183703- 20 KT183707. 21 22 23 Author’s address: Andor Doszpoly, Institute for Veterinary Medical Research, Centre for 24 Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary, H-1581 25 Budapest, P.O. Box 18, Hungary; e-mail: [email protected] 1 26 Abstract 27 Siberian sturgeon herpesvirus (SbSHV) was isolated in Russia for the first time in 2006. Nine 28 SbSHV isolates were recovered from different fish hatcheries producing the same CPE in cell 29 cultures, the same clinical signs and mortality kinetics in virus-infected fish, the same virus 30 neutralization pattern, and shared identical nucleotide sequences. In 2011 a new isolate was 31 recovered from juvenile sturgeon, which caused completely different CPE. That isolate was 32 not readily neutralized by Siberian sturgeon hyperimmune antisera and its DNA was not 33 recognized by the routine PCR developed for SbSHV detection.
    [Show full text]
  • Herpesvirus Systematics§ Andrew J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Veterinary Microbiology 143 (2010) 52–69 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic Herpesvirus systematics§ Andrew J. Davison * MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK ARTICLE INFO ABSTRACT Keywords: This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented Herpesvirus as a digest of current information flanked by commentaries on past activities and future Classification directions. Genomics The International Committee on Taxonomy of Viruses recently instituted a major Herpes simplex virus update of herpesvirus classification. The former family Herpesviridae was elevated to a new Human cytomegalovirus order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date.
    [Show full text]
  • Genetic Assays for Detecting Viral Recombination Rate
    (19) *EP003024948B1* (11) EP 3 024 948 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/6827 (2018.01) C12Q 1/70 (2006.01) 15.01.2020 Bulletin 2020/03 (86) International application number: (21) Application number: 14829649.4 PCT/US2014/048301 (22) Date of filing: 25.07.2014 (87) International publication number: WO 2015/013681 (29.01.2015 Gazette 2015/04) (54) GENETIC ASSAYS FOR DETECTING VIRAL RECOMBINATION RATE GENETISCHE TESTS ZUR BESTIMMUNG EINER VIRALEN REKOMBINATIONSFREQUENZ DOSAGES GÉNÉTIQUES POUR DÉTERMINER UNE FREQUENCE DE LA RECOMBINATION VIRALE (84) Designated Contracting States: • A. D. TADMOR ET AL: "Probing Individual AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Environmental Bacteria for Viruses by Using GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Microfluidic Digital PCR", SCIENCE, vol. 333, no. PL PT RO RS SE SI SK SM TR 6038, 1 July 2011 (2011-07-01), pages 58-62, XP055344735, ISSN: 0036-8075, DOI: (30) Priority: 25.07.2013 US 201361858311 P 10.1126/science.1200758 -& A. D. TADMOR ET 01.11.2013 US 201361899027 P AL: "Probing Individual Environmental Bacteria for Viruses by Using Microfluidic Digital PCR - (43) Date of publication of application: Supporting Online Material", SCIENCE, vol. 333, 01.06.2016 Bulletin 2016/22 no. 6038, 30 June 2011 (2011-06-30), pages 1-48, XP055344921, ISSN: 0036-8075, DOI: (73) Proprietor: Bio-rad Laboratories, Inc. 10.1126/science.1200758 Hercules, CA 94547 (US) • K.
    [Show full text]
  • Herpesviruses That Infect Fish
    Viruses 2011, 3, 2160-2191; doi:10.3390/v3112160 viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Herpesviruses that Infect Fish Larry Hanson 1,*, Arnon Dishon 2 and Moshe Kotler 3,4 1 Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39759, USA 2 KoVax Ltd., P.O. Box 45212, Bynet Build., Har Hotzvim Inds. Pk., Jerusalem 97444, Israel; E-Mail: [email protected] 3 Department of Pathology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel; E-Mail: [email protected] 4 The Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, the Hebrew University, Jerusalem 91120, Israel * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-662-325-1202; Fax: +1-662-325-1031. Received: 15 September 2011; in revised form: 15 October 2011 / Accepted: 22 October 2011 / Published: 8 November 2011 Abstract: Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae) and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae). Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions.
    [Show full text]
  • Herpesvirus Systematics§ Andrew J
    Veterinary Microbiology 143 (2010) 52–69 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic Herpesvirus systematics§ Andrew J. Davison * MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK ARTICLE INFO ABSTRACT Keywords: This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented Herpesvirus as a digest of current information flanked by commentaries on past activities and future Classification directions. Genomics The International Committee on Taxonomy of Viruses recently instituted a major Herpes simplex virus update of herpesvirus classification. The former family Herpesviridae was elevated to a new Human cytomegalovirus order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences.
    [Show full text]
  • Dna Replication
    IDENTIFICATION OF PUTATIVE FUNCTIONAL MOTIFS IN VIRAL PROTEINS ESSENTIAL FOR HUMAN CYTOMEGALOVIRUS (HCMV) DNA REPLICATION Heng Giap Woon Master of Science (Research) 2008 ABSTRACT Human cytomegalovirus (HCMV) is a ubiquitous virus that causes significant morbidity and mortality in immunocompromised individuals. Although there are prophylactic treatments available, all current antiviral drugs ultimately target the DNA polymerase, resulting in the increasing emergence of antiviral resistant strains in the clinical setting. There is a fundamental need for understanding the role of other essential genes in DNA replication as a foundation for developing new antiviral treatments that are safe and which utilize a mechanism of action different to existing therapies. In this study we looked at six HCMV replication genes encoding for the DNA polymerase accessory protein (UL44), single stranded DNA binding protein (UL57), primase (UL70), helicase (UL105), primase-helicase associated protein (UL102), and the putative initiator protein (UL84) in order to increase our understanding of their role in DNA replication. The aim of this project was to identify variation within these genes as well as to predict putative domains and motifs in order to ultimately express and study the functional properties of the HCMV primase (UL70) through the use of recombinant mutants. Sequencing of these genes revealed a high degree of conservation between the isolates with amino acid sequence identity of >97% for all genes. Using ScanProsite software from the Expert Protein Analysis System (ExPASy) proteomics server, we have mapped putative motifs throughout these HCMV replication genes. In particular, highly conserved putative N- linked glycosylation sites were identified in UL105 that were also conserved across 33 homologues as well as several unique motifs including casein kinase II phosphorylation sites (CKII) in UL105 and UL84, a microbodies signal motif in UL57 and an integrin binding site in the UL102 helicase-primase associated protein.
    [Show full text]