Evaluating the Current Weed Community in Wild Blueberry Fields and IPM Strategies for Spreading Dogbane (Apocynum Androsaemifolium)

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Current Weed Community in Wild Blueberry Fields and IPM Strategies for Spreading Dogbane (Apocynum Androsaemifolium) The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Winter 12-18-2020 Evaluating the Current Weed Community in Wild Blueberry Fields and IPM Strategies for Spreading Dogbane (Apocynum androsaemifolium) Anthony G. Ayers University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Plant Pathology Commons, and the Weed Science Commons Recommended Citation Ayers, Anthony G., "Evaluating the Current Weed Community in Wild Blueberry Fields and IPM Strategies for Spreading Dogbane (Apocynum androsaemifolium)" (2020). Electronic Theses and Dissertations. 3321. https://digitalcommons.library.umaine.edu/etd/3321 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. EVALUATING THE CURRENT WEED COMMUNITY IN WILD BLUEBERRY FIELDS AND IPM STRATEGIES FOR SPREADING DOGBANE (Apocynum androsaemifolium) By Anthony Ayers B.A. SUNY College of Environmental Science and Forestry, 2012 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Plant, Soil and Environmental Sciences) The Graduate School The University of Maine December 2020 Advisory Committee: Lily Calderwood, Extension Wild Blueberry Specialist and Assistant Professor of Horticulture, Advisor Eric Gallandt, Professor of Weed Ecology Seanna Annis, Associate Professor of Mycology EVALUATING THE CURRENT WEED COMMUNITY IN WILD BLUEBERRY FIELDS AND IPM STRATEGIES FOR SPREADING DOGBANE (Apocynum androsaemifolium) By Anthony Ayers Thesis Advisor: Dr. Lily Calderwood An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Plant, Soil and Environmental Sciences) December 2020 Lowbush blueberry (Vaccinium angustifolium) is Maine’s third largest-yielding crop (USDA 2020 a). From 2017 – 2019 the three season average yield was 57 million pounds which was harvested from 19,500 acres for a value of $22,468,000 (USDA 2020 c). A common challenge for farmers is the presence of weeds within their fields. Weeds take up valuable water, shade, nutrients and space that would otherwise be utilized by the lowbush blueberry. Weeds can reduce yield, increase disease incidence and interfere with harvest operations. Up to 84% of yield can be lost because of weed cover (Yarborough 2009; Yarborough and Mara 1997). There has not been a weed survey of lowbush blueberry fields in the state of Maine since 1980 (Yarborough and Bhowmik, 1989). We surveyed twenty fields in the field seasons of 2019-2020. Survey methods were similar to McCully et al. (1991) and used the Daubenmire Cover Rating System to measure surface area (Daubenmire 1959). Additionally, we interviewed farmers to learn how they have been managing weeds and to learn how they perceive their weeds. We ranked weeds by their frequency and surface area for both organic and conventional fields, allowing us to compare notable weeds and trends between the two systems. Our survey found more species and genera of weeds present in fields than Yarborough and Bhowmik (1989). Interview results showed that most farmers were able to correctly estimate the severity of weed coverage in their fields. The most frequent method of weed control was mowing, followed by string trimmer mowing. One of the most difficult weeds to manage within wild blueberry fields is spreading dogbane (Apocynum androsaemifolium). It resists at least six common herbicides (NBDAAF 2017) and can form dense patches through its rhizomes (Niering et al. 2001). Yarborough and Marra (1997) found that if left untreated, spreading dogbane patches reduced yield by 74%. Because of its resilient nature and negative effects on yield, research on spreading dogbane management is a priority. One facet of weed management is the use of biocontrol. While weeds in other agricultural systems have been managed through the use of pathogenic fungi, no research has been published on the use of fungi to manage spreading dogbane. The periodic mowing of woody weeds throughout the growing season has been found to significantly reduce patches of willow (Salix spp.) and white birch (Betula papyrifera Marshall). We considered if the same cutting strategy could show similar success on dogbane patches. In the summer of 2019, dogbane leaves with leaf spots were collected, and the fungi on these leaf spots were grown on potato dextrose agar. Spores were identified to genus using Malloch (1981). To measure the effectiveness of string trimmer mowing, sixteen patches of dogbane were mowed at different frequencies. Stem height, patch area, and number of stems per patches were collected before each cutting event. Two genera of fungi were found from the leaf spots: Ulocladium and Alternaria. Mowed patches of dogbane grew wider and had more stems than those that were not mowed. DEDICATION I’d like to dedicate this thesis to everyone that believed in me. My parents, my friends, and my mentors. Your support means the world to me. i ACKNOWLEDGEMENTS I’d like to thank the following for helping me directly with this thesis: Dr. Lily Calderwood, Dr. Seanna Annis, Dr. Eric Gallandt, Brogan Tooley, Mary Michaud, Becky Gumbrewicz, Bill Halteman, Greg Kornelis, Will Peterson, Dr. Henri Vanhanen, Louis Morin, Dr. Robert Causey, Dr. Bryan Peterson, Sydney Abramovich and Aidan Lurgio. Thank you to the following funders for contributing to my research assistantship and research activities: National Institute of Food and Agriculture (NIFA MAFES), University of Maine School of Food and Agriculture, University of Maine Cooperative Extension, and the Maine Food and Agriculture Center. ii TABLE OF CONTENTS DEDICATION .................................................................................................................................................................... i ACKNOWLEDGEMENTS .................................................................................................................................................. ii LIST OF TABLES .............................................................................................................................................................. v LIST OF FIGURES .......................................................................................................................................................... vii LIST OF EQUATIONS ...................................................................................................................................................... ix 1 EVALUATING THE CURRENT WEED COMMUNITY IN LOWBUSH BLUEBERRY FIELDS .............................................. 1 1.1 Abstract ........................................................................................................................................................... 1 1.2 Introduction .................................................................................................................................................... 1 1.2.1 Lowbush Blueberry Background ..................................................................................................... 1 1.2.2 Weeds and Weed Surveys in Lowbush Blueberry Fields ................................................................. 2 1.3 Materials and Methods.................................................................................................................................. 4 1.3.1 Weed Survey ................................................................................................................................... 4 1.3.2 Data Analysis ................................................................................................................................... 6 1.3.3 Farmer Interviews ........................................................................................................................... 7 1.4 Results .......................................................................................................................................................... 8 1.4.1 Weed Survey Results ....................................................................................................................... 8 1.4.2 Farmer Interview Results .............................................................................................................. 16 1.5 Discussion ................................................................................................................................................... 18 1.5.1 Weed Survey Discussion................................................................................................................ 18 1.5.2 Farmer Interview Discussion ......................................................................................................... 19 1.6 Conclusions ................................................................................................................................................. 20 2 EXPLORING IPM TOOLS FOR SPREADING DOGBANE (Apocynum androsaemifolium) MANAGEMENT IN LOWBUSH BLUEBERRY FIELDS .................................................................................................. 21 2.1 Abstract........................................................................................................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Factors Involved in the Maintenance of the Grassy Balds of the Great Smoky Mountains National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 3-1968 Factors Involved in the Maintenance of the Grassy Balds of the Great Smoky Mountains National Park Stephen Walker Radford University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Plant Sciences Commons Recommended Citation Radford, Stephen Walker, "Factors Involved in the Maintenance of the Grassy Balds of the Great Smoky Mountains National Park. " Master's Thesis, University of Tennessee, 1968. https://trace.tennessee.edu/utk_gradthes/1446 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Stephen Walker Radford entitled "Factors Involved in the Maintenance of the Grassy Balds of the Great Smoky Mountains National Park." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Botany. Edward E. C. Clebsch, Major Professor We have read this thesis and recommend its acceptance: Ronald H. Peterson, Edward R. Buckner Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) February 28, 1968 To the Graduate Council: I am submitting herewith a thesis written by Stephen Walker Radford entitled "Factors Involved in the Maintenance of the Grassy Balds of the Great Smoky Mountains National Park." I recommend that it be accepted for nine quarter hours of credit in partial fulfillment o�the requirements for the degree of Master of Science, with a major in Botany.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]
  • APPENDIX A—CHECKLIST of VASCULAR PLANTS Observed in the Vicinity of Sheffield
    PLANTS CHECKLIST APPENDIX A—CHECKLIST OF VASCULAR PLANTS Observed in the Vicinity of Sheffield COMMON NAME ORIGIN HORSETAILS HORSETAILS (Family Equisetaceae) ❏ Equisetum arvense field horsetail N ❏ Equisetum hyemale tall scouring-rush N FERNS ADDER’S-TONGUES (Family Ophioglossaceae) ❏ Botrychium multifidum leathery grape fern N (E) ROYAL FERNS (Family Osmundaceae) ❏ Osmunda regalis royal fern N HAY-SCENTED (Family Dennstaedtiaceae) ❏ Dennstaedtia punctilobula hay-scented fern N SPLEENWORTS (Family Aspleniaceae) ❏ Asplenium platyneuron ebony spleenwort N WOOD FERNS (Family Dryopteridaceae) ❏ Cystopteris fragilis brittle fern or fragile fern N (X) ❏ Cystopteris protrusa lowland fragile fern N ❏ Dryopteris marginalis leathery wood fern N ❏ Matteuccia struthiopteris ostrich fern N ❏ Onoclea sensibilis sensitive fern N ❏ Polystichum acrostichoides Christmas fern N GYNOSPERMS (GINKGOS & CONIFERS) GINKGOS (Family Ginkgoaceae) ❏ Ginkgo biloba ginkgo or maidenhair tree C PINES (Family Pinaceae) ❏ Picea glauca conica dwarf Alberta spruce C ❏ Picea pungens gluca blue spruce C ❏ Pinus nigra Austrian pine C ❏ Pinus strobus eastern white pine N ❏ Pseudotsuga menziesii Douglas fir C ❏ Tsuga canadensis eastern hemlock N CYPRESSES (Family Cupressaceae) ❏ Juniperus virginiana eastern red-cedar N ❏ Thuja occidentalis arbor vitae N YEWS (Family Taxaceae) ❏ Taxus canadensis Canada yew N ANGIOSPERMS (FLOWERING PLANTS) DICOTYLEDONS (CLASS MAGNOLIOPSIDA) MAGNOLIAS (Family Magnoliaceae) ❏ Liriodendron tulipifera tulip-tree or tulip-poplar N ❏ Magnolia acuminata
    [Show full text]
  • National List of Plant Species That Occur in Wetlands
    ;>\ ....--'. PB89-169940 BIOLOGICAL REPORT 88(26.9) MAY 1988 NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: . NORTHWEST (REGION 9) " h d W"ldl"f S· In Cooperation with the National and FIS an I I e ervlce Regional Interagency Review Panels U.S. Department of the Interior REPR~EDBY u.s. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL ItEORMATJON SERVICE SPRINGFIELD. VA 22161 S02n-'Ol RE?ORT DOCUMENTATION 11. REPORT NO. PAG, iBioloqical Report 88(26.9) 4. TItle arld SUbtitle National List of Plant Species That Occur in Wetiands: Northwe~t (Region 9). 7. Autllor(s) Porter B. Reed, Jr. 9. Perfonnlnc O,..nl.etton H..... • nd _ .... National Ecology Research Center U.S. Fish and Wildlife Service 11. <:omncttC) or Gr.ntCG) No. Creekside One Bldg., 2627 Redwing Rd. Fort Collins, CO 80526-2899 CGl 12. SIlO....,.;n. O,..nlUtlon H_ .rld Acid.... 13. TYIMI of Repott & Period e-Nd Department of the Interior U.S. Fish and Wildlife Service Research and Development 14. Washington, DC 20240 The National list of Plant Species That Occur in Wetlands represents the combined efforts of many biologists over the last decade to define the wetland flora of the United States. The U.S. Fish and Wildlife Service initially developed the list in order to provide an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (FWS/OBS 79/31) to assist in the field identification of wetlands. Plant species that occur in wetlands, as used in the National List, are defined as species that have demonstrated an ability to achieve maturity and reproduce in an environment where all or portions of the soil within the root zone become, periodically or continuously, saturated or inundated during the growing season.
    [Show full text]
  • Biochemical and Genetic Characterization of Rubber Production In
    BIOCHEMICAL AND GENETIC CHARACTERIZATION OF RUBBER PRODUCTION IN PRICKLY LETTUCE (Lactuca serriola L.) By JARED L. BELL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Molecular Plant Sciences Graduate Program MAY 2013 © Copyright by JARED LARS BELL, 2013 All Rights Reserved © Copyright by JARED LARS BELL, 2013 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of JARED LARS BELL find it satisfactory and recommend that it be accepted. ___________________________________ Ian C. Burke, Ph.D., Chair ___________________________________ Michael M. Neff, Ph.D., Co-Chair ___________________________________ Kimberly A. Garland-Campbell, Ph.D. ___________________________________ John K. Fellman, Ph.D. ii ACKNOWLEDGMENTS The collaborators of this research are grateful for funding provided by the United States Department of Agriculture Aegilops cylindrica – Biomass for Biofuels and Bioproducts from Weedy Plants (NIFA/USDA special grant) special grant. Work on this project has also been made possible by the technical support and expertise of the following people: Lydia Baxter- Potter, Nick Boydston, Arron Carter, Madeline Jacobson, Misha Manuchehri, Dennis Pittmann, Alan Raeder, Dilpreet Riar, Sachin Rustgi, Sherri Rynearson, Deven See, Jamin Smitchger, Randy Stevens all of the Crop and Soil Science Department, Washington State University. Assistance with NMR analysis was given by Bill Hiscox at the Washington State University NMR Center. NMR equipment was supported by NIH grants RR0631401 and RR12948, NSF grants CHE-9115282 and DBI-9604689 and the Murdock Charitable Trust. Rubber physical property analysis was performed with the guidance and support of Dr.
    [Show full text]
  • Complete Iowa Plant Species List
    !PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove
    [Show full text]
  • VH Flora Complete Rev 18-19
    Flora of Vinalhaven Island, Maine Macrolichens, Liverworts, Mosses and Vascular Plants Javier Peñalosa Version 1.4 Spring 2019 1. General introduction ------------------------------------------------------------------------1.1 2. The Setting: Landscape, Geology, Soils and Climate ----------------------------------2.1 3. Vegetation of Vinalhaven Vegetation: classification or description? --------------------------------------------------3.1 The trees and shrubs --------------------------------------------------------------------------3.1 The Forest --------------------------------------------------------------------------------------3.3 Upland spruce-fir forest -----------------------------------------------------------------3.3 Deciduous woodlands -------------------------------------------------------------------3.6 Pitch pine woodland ---------------------------------------------------------------------3.6 The shore ---------------------------------------------------------------------------------------3.7 Rocky headlands and beaches ----------------------------------------------------------3.7 Salt marshes -------------------------------------------------------------------------------3.8 Shrub-dominated shoreline communities --------------------------------------------3.10 Freshwater wetlands -------------------------------------------------------------------------3.11 Streams -----------------------------------------------------------------------------------3.11 Ponds -------------------------------------------------------------------------------------3.11
    [Show full text]
  • Effects of Humus and Shading Levels in the Production of Lactuca Canadensis L
    (2020) 69 (1) p 32-37 ISSN 0120-2812 | e-ISSN 2323-0118 doi: https://doi.org/10.15446/acag.v69n1.72550 Effects of humus and shading levels in the production of Lactuca canadensis L. seedlings Efectos de niveles de humus y sombreado en la producción de plántulas de Lactuca canadensis L. Dryelle Sifuentes Pallaoro1, Cárita Rodrigues de Aquino Arantes2, Amanda Ribeiro Correa3, Elisangela Clarete Camili4 y Maria de Fátima Barbosa Coelho*5 1.Estudiante de Doctorado del PPGAT/UFMT , [email protected], 2.Doctorado en Agricultura Tropical, carita. [email protected], 3.Estudiante de Doctorado del PPGAT/UFMT, [email protected], 4.Profesor de Postgrado en Agricultura Tropical – UFMT, [email protected], 5.Profesor de Postgrado en Agricultura Tropical – UFMT. *Autor para correspondencia: [email protected] Rec.: 2018-05-30 Acep.: 2019-12-12 Resumen El trabajo se realizó en la Universidad Federal de Mato Grosso, Cuiabá, Brasil, con el objeto de evaluar diferentes niveles de sombreado y dosis de humus en la producción de plántulas de Lactuca canadensis L. (lechuga silvestre). Se utilizó un diseño de bloques completos al azar en esquema factorial 4 x 5 (cuatro niveles de sombreado y cinco dosis de humus). Los diferentes niveles de sombreado fueron obtenidos utilizando tela negra de polietileno con 35, 50 y 70% de sombra y más un tratamiento testigo (pleno sol). Los sustratos fueron obtenidos por la mezcla del producto comercial para hortalizas (Vivatto Slim® plus) más humus de lombriz en las proporciones de 0, 15, 30, 45 y 60%. En contraste con el tratamiento testigo, con sombra de 50% se encontró la mejor emergencia y desarrollo de plántulas.
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]