China Educator's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allergic Contact Dermatitis to Plants: Understanding The
Document downloaded from http://http://www.actasdermo.org, day 06/09/2012. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Actas Dermosifiliogr. 2012;103(6):456---477 REVIEW Allergic Contact Dermatitis to Plants: Understanding the ଝ Chemistry will Help our Diagnostic Approach a,∗ b a a E. Rozas-Munoz,˜ J.P. Lepoittevin, R.M. Pujol, A. Giménez-Arnau a Department of Dermatology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain b Dermatochemistry Laboratory, Institut of Chemistry, University of Strasbourg, Strasbourg, France Received 12 April 2011; accepted 29 July 2011 Available online 10 August 2012 KEYWORDS Abstract Allergic contact dermatitis due to plants is common. Potentially allergenic plants and plant products are found in many everyday environments, such as the home, the garden, Contact dermatitis; Plants; the workplace, and recreational settings. By improving our knowledge of allergenic plant- ␣-Methylene-␥- derived chemical compounds, we will be better positioned to identify novel allergens. We butyrolactone; review the most relevant chemical allergens that contribute to plant allergic contact dermatitis Quinones; and propose a clinical classification system based on 5 major families of chemical sensitiz- ␣ ␥ Terpenes; ers: -methylene- -butyrolactones, quinones, phenol derivatives, terpenes, and miscellaneous Phenols structures (disulfides, isothiocyanates, and polyacetylenic derivates). We also describe the dif- ferent clinical pictures of plant allergic contact dermatitis and review currently available patch test materials. A better understanding of the specific allergens involved in plant allergic contact dermatitis will help to predict cross-reactivity between different plant species or families. © 2011 Elsevier España, S.L. and AEDV. -
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
Phytophthora Ramorum Sudden Oak Death Pathogen
NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States. -
What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit. -
American Smoketree (Cotinus Obovatus Raf.)
ACADBJIY OJl'· SCIBNCm FOR 1M2 11 o AMERICAN SMOKETREE (COTINUS OBOVATUS RAP.), ONE OF OKLAHOMA'S RAREST TREE SPECIES ELBERT L. LITTLE, IlL, Forest Senlee United States DepartmeDt of J.grlealture, Washington, D. C. Though the American Smoketree was discovered in Oklahoma by Thomu Nuttall in 1819, only one more collection of this rare tree species within the state has been reported. This article summarizes these records, add8 a third Oklahoma locality, and calle attention to the older lClenttf1c name, Cotfftu ob0'V4tu Ral, which 8hould replace the one In ue, Coth," (lm.en. eo".. Hutt. II PROCDDINGS OJ' THE OKLAHOMA Nattall (1821), the flnt botaDl8t to mit what 11 now Okahoma, men tlODed In hie journal for July 18, 1819, the dl8covery, to his great 81U'Prlse, of thla new, Jarp Ihrub, aearcely dlltlnet from BA.. cot'"'' of Europe. He deIcrlbed the location as on l1mestone clUb of the Grand (or Neosho) RITer near a bend called the Eagle'e Neat more tban thirty miles north of the confluence of the Grand and Arkanlla8 River.. The place probably ..... alODC the 8< bank of the river In eoutheastern Mayes County, at the weetern edge of the Ozark Plateau in northeastern Oklahoma. It 11 hoped that Oklahoma botaDleti w1ll revisit the type locality and a1eo die. COTer other etatloD•. Thll Dew species was Dot mentioned In Nuttall'. (1837) unfinished publication on his collections of the flora of Arkansas Territory. Torrey aD4 Gray (1888) IDcluded Nuttall's frultfng specimens doubtfully under the related European species, then known as Rhu coUnu L., with Nuttall's upubllehed herbariUM Dame, Bh., coUnoUles Nutt., as a synonym. -
45Th Anniversary Year
VOLUME 45, NO. 1 Spring 2021 Journal of the Douglasia WASHINGTON NATIVE PLANT SOCIETY th To promote the appreciation and 45 conservation of Washington’s native plants Anniversary and their habitats through study, education, Year and advocacy. Spring 2021 • DOUGLASIA Douglasia VOLUME 45, NO. 1 SPRING 2021 journal of the washington native plant society WNPS Arthur R. Kruckberg Fellows* Clay Antieau Lou Messmer** President’s Message: William Barker** Joe Miller** Nelsa Buckingham** Margaret Miller** The View from Here Pamela Camp Mae Morey** Tom Corrigan** Brian O. Mulligan** by Keyna Bugner Melinda Denton** Ruth Peck Ownbey** Lee Ellis Sarah Reichard** Dear WNPS Members, Betty Jo Fitzgerald** Jim Riley** Mary Fries** Gary Smith For those that don’t Amy Jean Gilmartin** Ron Taylor** know me I would like Al Hanners** Richard Tinsley Lynn Hendrix** Ann Weinmann to introduce myself. I Karen Hinman** Fred Weinmann grew up in a small town Marie Hitchman * The WNPS Arthur R. Kruckeberg Fellow Catherine Hovanic in eastern Kansas where is the highest honor given to a member most of my time was Art Kermoade** by our society. This title is given to Don Knoke** those who have made outstanding spent outside explor- Terri Knoke** contributions to the understanding and/ ing tall grass prairie and Arthur R. Kruckeberg** or preservation of Washington’s flora, or woodlands. While I Mike Marsh to the success of WNPS. Joy Mastrogiuseppe ** Deceased love the Midwest, I was ready to venture west Douglasia Staff WNPS Staff for college. I earned Business Manager a Bachelor of Science Acting Editor Walter Fertig Denise Mahnke degree in Wildlife Biol- [email protected] 206-527-3319 [email protected] ogy from Colorado State Layout Editor University, where I really Mark Turner Office and Volunteer Coordinator [email protected] Elizabeth Gage got interested in native [email protected] plants. -
An Intergeneric Hybrid Between Franklinia Alatamaha and Gordonia
HORTSCIENCE 41(6):1386–1388. 2006. hybrids using F. alatamaha. Ackerman and Williams (1982) conducted extensive crosses · between F. alatamaha and Camellia L. spp. Gordlinia grandiflora (Theaceae): and produced two intergeneric hybrids, but their growth was weak and extremely slow. An Intergeneric Hybrid Between Ranney and colleagues (2003) reported suc- cessful hybridization between F. alatamaha Franklinia alatamaha and and Schima argentea Pritz. In 1974, Dr. Elwin Orton, Jr. successfully crossed G. lasianthus with F. alatamaha and produced 33 hybrids Gordonia lasianthus (Orton, 1977). Orton (1977) further reported Thomas G. Ranney1,2 that the seedlings grew vigorously during the Department of Horticultural Science, Mountain Horticultural Crops first growing season and that a number of them flowered the following year; however, Research and Extension Center, North Carolina State University, 455 all the plants eventually died, possibly be- Research Dr., Fletcher, NC 28732-9244 cause of some type of genetic incompatibility 1 or a pathogen (e.g., Phytophthora). Although Paul R. Fantz Orton’s report was somewhat discouraging, Department of Horticultural Science, Box 7603, North Carolina State hybridization between F. alatamaha and University, Raleigh, NC 27695-7609 G. lasianthus could potentially combine the cold hardiness of F. alatamaha with the ever- Additional index words. Gordonia alatamaha, Gordonia pubescens, distant hybridization, green foliage of G. lasianthus and broaden intergeneric hybridization, plant breeding, wide hybridization the genetic base for further breeding among Abstract. Franklinia alatamaha Bartr. ex Marshall represents a monotypic genus that was these genera. The objective of this report is originally discovered in Georgia, USA, but is now considered extinct in the wild and is to describe the history of and to validate new maintained only in cultivation. -
Differential Resistance of Gordonieae Trees to Phytophthora Cinnamomi
HORTSCIENCE 44(5):1484–1486. 2009. Successful crosses of Franklinia · Schima produced the intergeneric hybrid ·Schimlinia (Ranney et al., 2003) and crosses of Frank- Differential Resistance of Gordonieae linia · Gordonia produced the intergeneric hybrid ·Gordlinia (Ranney and Fantz, 2006). Trees to Phytophthora cinnamomi However, little is known about the resistance 1 2,5 3 of related species and potential parents to Elisabeth M. Meyer , Thomas G. Ranney , and Thomas A. Eaker P. cinnamomi. The objective of this study Department of Horticultural Science, Mountain Horticultural Crops was to evaluate a collection of species, Research and Extension Center, North Carolina State University, 455 clones, and hybrids of Franklinia, Gordonia, Research Drive, Fletcher, NC 28732 and Schima for resistance to P. cinnamomi. 4 Kelly Ivors Materials and Methods Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, During the summer of 2008, seven taxa of Gordonieae trees were inoculated with Mills River, NC 28759 P. cinnamomi at the North Carolina State Additional index words. host plant resistance, disease resistance, Abies fraseri, Franklinia University Mountain Horticultural Crops alatamaha, Gordonia lasianthus, ·Gordlinia grandiflora, ·Schimlinia floribunda, Schima Research Station in Mills River, NC. These taxa included F. alatamaha, G. lasianthus, S. wallichii, Schima khasiana, Phytophthora cinnamomi khasiana, S. wallichii, ·Gordlinia H2004- Abstract. Trees in the Theaceae tribe Gordonieae are valuable nursery crops, but some of 024-008, ·Schimlinia H2002-022-083, and these taxa are known to be highly susceptible to root rot caused by Phytophthora ·Schimlinia H2002-022-084. The plants of cinnamomi Rands. The objective of this study was to evaluate a collection of Gordonieae the selected Gordonieae taxa were 5-month- taxa for resistance to this pathogen. -
Circumscription and Phylogeny of Apiaceae Subfamily Saniculoideae Based on Chloroplast DNA Sequences
ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2007) xxx–xxx www.elsevier.com/locate/ympev Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences Carolina I. Calviño a,b,¤, Stephen R. Downie a a Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3707, USA b Instituto de Botánica Darwinion, Buenos Aires, Argentina Received 14 July 2006; revised 3 January 2007; accepted 4 January 2007 Abstract An estimate of phylogenetic relationships within Apiaceae subfamily Saniculoideae was inferred using data from the chloroplast DNA trnQ-trnK 5Ј-exon region to clarify the circumscription of the subfamily and to assess the monophyly of its constituent genera. Ninety- one accessions representing 14 genera and 82 species of Apiaceae were examined, including the genera Steganotaenia, Polemanniopsis, and Lichtensteinia which have been traditionally treated in subfamily Apioideae but determined in recent studies to be more closely related to or included within subfamily Saniculoideae. The trnQ-trnK 5Ј-exon region includes two intergenic spacers heretofore underutilized in molecular systematic studies and the rps16 intron. Analyses of these loci permitted an assessment of the relative utility of these noncoding regions (including the use of indel characters) for phylogenetic study at diVerent hierarchical levels. The use of indels in phylogenetic anal- yses of both combined and partitioned data sets improves resolution of relationships, increases bootstrap support values, and decreases levels of overall homoplasy. Intergeneric relationships derived from maximum parsimony, Bayesian, and maximum likelihood analyses, as well as from maximum parsimony analysis of indel data alone, are fully resolved and consistent with one another and generally very well supported. -
Tagawa Gardens June Snow Giant Dogwood
June Snow Giant Dogwood Cornus controversa 'June Snow-JFS' Height: 30 feet Spread: 40 feet Sunlight: Hardiness Zone: 4 Description: June Snow Giant Dogwood flowers Covered with lovely white flower clusters in spring; a Photo courtesy of NetPS Plant Finder large rounded form, with gracefully layered branches make this tree an excellent specimen; attractive fruit in late summer turns deep blue-black; orange to red fall color Ornamental Features June Snow Giant Dogwood features showy clusters of white flowers held atop the branches in late spring. It has dark green foliage throughout the season. The pointy leaves turn an outstanding dark red in the fall. It produces navy blue berries from early to late fall. The warty gray bark and green branches add an interesting dimension to the landscape. June Snow Giant Dogwood in bloom Landscape Attributes Photo courtesy of NetPS Plant Finder June Snow Giant Dogwood is a deciduous tree with a stunning habit of growth which features almost oriental horizontally-tiered branches. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance tree, and should only be pruned after flowering to avoid removing any of the current season's flowers. It is a good choice for attracting birds to your yard. It has no significant negative characteristics. June Snow Giant Dogwood is recommended for the following landscape applications; - Accent - Shade Planting & Growing June Snow Giant Dogwood will grow to be about 30 feet tall at maturity, with a spread of 40 feet. -
Toxicodendron Diversilobum (Torr
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Toxicodendron diversilobum (Torr. & A. Gray) E. Greene Pacific poison-oak Family: Anacardiaceae Range: Baja California to British Columbia. West of the Cascade Range in Washington and Oregon; ubiquitous in California west of the Sierra Nevada. Also along the western side of Nevada. Habitat: Mixed evergreen forests, woodlands, chaparral, coastal sage scrub, and riparian zones. It is one of the most widespread shrubs in California. It generally occurs on acid soils, but is not limited to any particular soil type, texture or drainage pattern. Pacific poison-oak is typically found at less than 5,000 ft elevation and grows on all aspects. It can tolerate drought, fire, and low temperatures. Origin: Native to the Pacific Coast of the western United States from British Columbia to Baja California. Impacts: One of the most hazardous native plants in the western states. It can be problematic wherever people are likely to contact the plant such as along trails or during brush removal around homes, along rights-of-way, fire breaks, construction sites, etc. -
University of Michigan University Library
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XX, NO. 5, pp. 89-119 (6 pls., 1 fig.) MAY10, 1966 ADDITIONS TO AND REVISION OF THE OLIGOCENE RUBY PAPER SHALE FLORA OF SOUTHWESTERN MONTANA BY HERMAN I?. BECKER Published with aid from the Paleontology Accessions Fund through the generosity of MR. AND MRS.EDWARD PULTENEY WRIGHT MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWIS B. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XIX. Parts of volumes may be obtained if available 1. Upper Devonian and Lower Mississipian Pectinoid Pelecypods from Michi- gan, Ohio, Indiana, Iowa, and Missouri, by Thomas W. Hutchinson and Erwin C. Stumm. Pages 1-48, with 7 plates. 2. Two New Middle Devonian Species of the Starfish Devonaster from South- western Ontario, by Robert V. Kesling and Jean D. Wright. Pages 49-61, with 4 plates. 3. A Revision of the Ordovician Trilobite Asaphus platycephalus Stokes, by David G. Darby and Erwin C. Stumm. Pages 63-73, with 2 plates. 4. Proctotkylacocrinus esseri, a New Crinoid from the Middle Devonian Silica Formation of Northwestern Ohio, by Robert V.