Pronator Teres Myotendinous Tear
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Median Nerve Compression at Pronator Teres
1 Median Nerve Compression at Pronator Teres Surgical Indications and Considerations Anatomical Considerations: The median nerve and brachial artery travel together down the arm. Therefore, one must be very careful not to interfere with either the median nerve or the brachial artery, especially when conducting surgical procedures. In the area of the pronator teres, there are many tendons as well. It is important to identify, as much as possible, the correct site of compression. Pathogenesis: The median nerve can get entrapped or compressed by several structures in the arm. The pronator teres muscle is the most common. Others entrapment sites include the flexor digitorum superficialis arch, the lacertus fibrosis (bicipital aponeurosis), and ligament of Struthers (frequency occurs in that order). For compression of the median nerve at the pronator teres and flexor digitorum superficialis, the cause is almost always due to hypertrophy of the respected muscle. This hypertrophy is from quick, forceful and repeated movements to the involved muscle. Examples include a carpenter or a baseball batter. As the muscle hypertrophies, the signal from the median nerve is diminished resulting in paresthesias in the median nerve distribution (lateral arm and hand) distal to the site of compression. Pain in the volar part of the forearm, often aggravated by repetitive supination and pronation, is a common symptom of pronator involvement. Another indicator is forearm pain with the compression of muscle such as pain in the volar part of the forearm implicating pronator teres. Onset is typically insidious and diagnosis is usually delayed 9 months to 2 years. Epidemiology: Pronator teres syndrome is the second most common cause of median nerve compression behind carpal tunnel syndrome. -
Pronator Syndrome: Clinical and Electrophysiological Features in Seven Cases
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.39.5.461 on 1 May 1976. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1976, 39, 461-464 Pronator syndrome: clinical and electrophysiological features in seven cases HAROLD H. MORRIS AND BRUCE H. PETERS From the Department ofNeurology, University of Texas Medical Branch, Galveston, Texas, USA SYNOPSIS The clinical and electrophysiological picture of seven patients with the pronator syndrome is contrasted with other causes ofmedian nerve neuropathy. In general, these patients have tenderness over the pronator teres and weakness of flexor pollicis longus as well as abductor pollicis brevis. Conduction velocity of the median nerve in the proximal forearm is usually slow but the distal latency and sensory nerve action potential at the wrist are normal. Injection of corticosteroids into the pronator teres has produced relief of symptoms in a majority of patients. Protected by copyright. In the majority of isolated median nerve dys- period 101 cases of the carpal tunnel syndrome functions the carpal tunnel syndrome is appropri- and the seven cases of the pronator syndrome ately first suspected. The median nerve can also reported here were identified. Median nerve be entrapped in the forearm giving rise to a conduction velocity determinations were made on similar picture and an erroneous diagnosis. all of these patients. The purpose of this report is to draw full attention to the pronator syndrome and to the REPORT OF CASES features which allow it to be distinguished from Table 1 provides clinical details of seven cases of the median nerve entrapment at other sites. -
Monday: Back, Biceps, Forearms, Traps & Abs Wednesday
THE TOOLS YOU NEED TO BUILD THE BODY YOU WANT® Store Workouts Diet Plans Expert Guides Videos Tools BULLDOZER TRAINING 3 DAY WORKOUT SPLIT 3 day Bulldozer Training muscle building split. Combines rest-pause sets with progressive Main Goal: Build Muscle Time Per Workout: 30-45 Mins resistance. Workouts are shorter but more Training Level: Intermediate Equipment: Barbell, Bodyweight, intense. Program Duration: 8 Weeks Dumbbells, EZ Bar, Machines Link to Workout: https://www.muscleandstrength.com/ Days Per Week: 3 Days Author: Steve Shaw workouts/bulldozer-training-3-day-workout-split Monday: Back, Biceps, Forearms, Traps & Abs Exercise Mini Sets Rep Goal Rest Deadlift: Perform as many rest-paused singles as you (safely) can within 10 Mins. Use a weight you could easily perform a 10 rep set with. Rest as needed. When you can perform 15 reps, add weight the next time you deadlift. Barbell Row 5 25 30 / 30 / 45 / 45 Wide Grip Pull Up 5 35 30 / 30 / 30 / 30 Standing Dumbbell Curl 4 25 30 / 30 / 30 EZ Bar Preacher Curl 4 25 30 / 30 / 30 Seated Barbell Wrist Curl 4 35 30 / 30 / 30 Barbell Shrug 5 35 30 / 30 / 30 / 30 Preferred Abs Exercise(s): I recommend using at least one weighted exercise (e.g. Weighted Sit Ups or Cable Crunches). Rest Periods: 30 / 30 / 45 / 45 notates rest periods between each set. Take 30 Secs after the 1st set, 30 Secs after the 2nd set, 45 Secs after the 3rd set, etc. After the final set, rest, and move on to the next exercise. -
Unusual Cubital Fossa Anatomy – Case Report
Anatomy Journal of Africa 2 (1): 80-83 (2013) Case Report UNUSUAL CUBITAL FOSSA ANATOMY – CASE REPORT Surekha D Shetty, Satheesha Nayak B, Naveen Kumar, Anitha Guru. Correspondence: Dr. Satheesha Nayak B, Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal University, Madhav Nagar, Manipal, Karnataka State, India. 576104 Email: [email protected] SUMMARY The median nerve is known to show variations in its origin, course, relations and distribution. But in almost all cases it passes through the cubital fossa. We saw a cubital fossa without a median nerve. The median nerve had a normal course in the upper part of front of the arm but in the distal third of the arm it passed in front of the medial epicondyle of humerus, surrounded by fleshy fibres of pronator teres muscle. Its course and distribution in the forearm was normal. In the same limb, the fleshy fibres of the brachialis muscle directly continued into the forearm as brachioradialis, there being no fibrous septum separating the two muscles from each other. The close relationship of the nerve to the epicondyle might make it vulnerable in the fractures of the epicondyle. The muscle fibres surrounding the nerve might pull up on the nerve and result in altered sensory-motor functions of the hand. Since the brachialis and brachioradialis are two muscles supplied by two different nerves, this continuity of the muscles might result in compression/entrapment of the radial nerve in it. Key words: Median nerve, cubital fossa, brachialis, brachioradialis, entrapment INTRODUCTION The median nerve is the main content of and broad tendon which is inserted into the cubital fossa along with brachial artery and ulnar tuberosity and to a rough surface on the biceps brachii tendon. -
Anatomical Study of the Branch of the Palmaris Longus Muscle for Its Transfer to the Posterior Interosseous Nerve
Int. J. Morphol., 37(2):626-631, 2019. Anatomical Study of the Branch of the Palmaris Longus Muscle for its Transfer to the Posterior Interosseous Nerve Estudio Anatómico del Ramo del Músculo Palmar Largo para su Transferencia al Nervio Interóseo Posterior Edie Benedito Caetano1; Luiz Angelo Vieira1; Maurício Benedito Ferreira Caetano2; Cristina Schmitt Cavalheiro3; Marcel Henrique Arcuri3 & Luís Cláudio Nascimento da Silva Júnior3 CAETANO, E. B.; VIEIRA, L. A.; FERREIRA, C. M. B.; CAVALHEIRO, C. S.; ARCURI, M. H. & SILVA JÚNIOR, L. C. N. Anatomical study of the branch of the palmaris longus muscle for its transfer to the posterior interosseous nerve. Int. J. Morphol., 37(2):626-631, 2019. SUMMARY: The objective of the study was to evaluate the anatomical characteristics and variations of the palmaris longus nerve branch and define the feasibility of transferring this branch to the posterior interosseous nerve without tension. Thirty arms from 15 adult male cadavers were dissected after preparation with 20 % glycerin and formaldehyde intra-arterial injection. The palmaris longus muscle (PL) received exclusive innervation of the median nerve in all limbs. In most it was the second muscle of the forearm to be innervated by the median nerve. In 5 limbs the PL muscle was absent. In 5 limbs we identified a branch without sharing branches with other muscles. In 4 limbs it shared origin with the pronator teres (PT), in 8 with the flexor carpi radialis (FCR), in 2 with flexor digitorum superficialis (FDS), in 4 shared branches for the PT and FCR and in two with PT, FCR, FDS. The mean length was (4.0 ± 1.2) and the thickness (1.4 ± 0.6). -
Morphological Study of Palmaris Longus Muscle
International INTERNATIONAL ARCHIVES OF MEDICINE 2017 Medical Society SECTION: HUMAN ANATOMY Vol. 10 No. 215 http://imedicalsociety.org ISSN: 1755-7682 doi: 10.3823/2485 Humberto Ferreira Morphological Study of Palmaris Arquez1 Longus Muscle ORIGINAL 1 University of Cartagena. University St. Thomas. Professor Human Morphology, Medicine Program, University of Pamplona. Morphology Laboratory Abstract Coordinator, University of Pamplona. Background: The palmaris longus is one of the most variable muscle Contact information: in the human body, this variations are important not only for the ana- tomist but also radiologist, orthopaedic, plastic surgeons, clinicians, Humberto Ferreira Arquez. therapists. In view of this significance is performed this study with Address: University Campus. Kilometer the purpose to determine the morphological variations of palmaris 1. Via Bucaramanga. Norte de Santander, longus muscle. Colombia. Suramérica. Tel: 75685667-3124379606. Methods and Findings: A total of 17 cadavers with different age groups were used for this study. The upper limbs region (34 [email protected] sides) were dissected carefully and photographed in the Morphology Laboratory at the University of Pamplona. Of the 34 limbs studied, 30 showed normal morphology of the palmaris longus muscle (PL) (88.2%); PL was absent in 3 subjects (8.85% of all examined fo- rearm). Unilateral absence was found in 1 male subject (2.95% of all examined forearm); bilateral agenesis was found in 2 female subjects (5.9% of all examined forearm). Duplicated palmaris longus muscle was found in 1 male subject (2.95 % of all examined forearm). The palmaris longus muscle was innervated by branches of the median nerve. The accessory palmaris longus muscle was supplied by the deep branch of the ulnar nerve. -
Pronator Teres Tear at the Myotendinous Junction in the Recreational Golfer: a Case Report
International Journal of Orthopaedics Online Submissions: http: //www.ghrnet.org/index.php/ijo Int. J. of Orth. 2021 April 28; 8(2): 1457-1462 doi: 10.17554/j.issn.2311-5106.2021.08.405 ISSN 2311-5106 (Print), ISSN 2313-1462 (Online) CASE REPORT Pronator Teres Tear at the Myotendinous Junction in the Recreational Golfer: A Case Report Alvarho J. Guzman1, BA; Stewart A. Bryant1, MD; Shane M. Rayos Del Sol1, BS, MS; Brandon Gardner1, MD, PhD; Moyukh O. Chakrabarti1, MBBS; Patrick J. McGahan1, MD; James L. Chen1, MD 1 Department of Orthopedic Surgery, Advanced Orthopedics & was expected to make a complete return to pre-injury level athletic Sports Medicine, San Francisco, CA, the United States. activity with conservative management. With this article, we consider biceps rupture on the differential diagnoses associated with pronator Conflict-of-interest statement: The author(s) declare(s) that there teres musculotendinous injuries, emphasize the significance of club is no conflict of interest regarding the publication of this paper. type in relation to golfing injuries, and propose a potential pronator teres rupture non-operative rehabilitation protocol. Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external Key words: Pronator teres; Golf; Biceps; Ecchymosis; Rehabilitation reviewers. It is distributed in accordance with the Creative Com- protocol mons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non- © 2021 The Author(s). Published by ACT Publishing Group Ltd. All commercially, and license their derivative works on different terms, rights reserved. -
Workout Plan Pdf
WORKOUT PLAN PDF 17 INCHES – ARMS TRAINING PROGRAM 17 INCHES is a 10 weeks Arm training program to build size of Biceps & Triceps. This will help to gain 1-2 inches arms size and 8-10 pounds of muscle mass in 10 weeks. Follow the exact workout & nutrition plan for the proper results. GURU MANN – Nutritionist & Advanced Fitness Professional United States Guru Mann Fitness Inc. WORKOUT SPLIT OPTION 1 OPTION 2 MONDAY STRENGTH – BICEPS/TRICEPS ------ TUESDAY ------ STRENGTH – BICEPS/TRICEPS WEDNESDAY ------ ------ THURSDAY ENDURANCE – BICEPS/TRICEPS ------ FRIDAY ------ ENDURANCE – BICEPS/TRICEPS SATURDAY ------ ------ SUNDAY REST REST Combine it with other workout plan STRENGTH EXERCISES SETS REPS ALTERNATE EXERCISES 0 WARM UP DB CURL OR EMPLY BARBELL 2-3 15-20 --------- TRICEPS PUSHDOWN 1 SUPER SET 1A. EZ BARBELL CURL 3 8-7-6 STRAIGHT BAR CURL 1B. HAMMER CURL 2 SUPER SET 2A. BARBELL PREACHER CURL 3 8-7-6 DB PREACHER CURL 2B. DB CON. CURL 3 SUPER SET 3A. ROPE CURL 3 8-7-6 CLOSE GRIP BAR 3B. ROPE OVERHEAD EXT. CURL 4 SUPER SET 4A. SKULL CRUSHER 3 8-7-6 ---------- 4B. DB KICKBACK 5 SUPER SET 5A. DB OVERHEAD EXT. 3 8-7-6 5B. WEIGHTED CLOSE GRIP ---------- INCLINE PUSHUP 6 SUPER SET 6A. WRIST CURL (PALM UP) 3 8-7-6 WRIST CURL (PALM 6B. STANDING WRIST CURL FACING DOWN) REST IS 2-3 MIN IN BETWEEN THE SET. THERE IS NO REST IN-BETWEEN THE SUPER SET. ENDURANCE EXERCISES SETS REPS ALTERNATE EXERCISES 0 WARM UP DB CURL OR EMPLY BARBELL 3 15-20 --------- TRICEPS PUSHDOWN 1 SUPER SET 1A. -
The Lacertus Syndrome of the Elbow in Throwing Athletes
The Lacertus Syndrome of the Elbow in Throwing Athletes Steve E. Jordan, MD KEYWORDS Medial elbow pain Differential diagnosis Lacertus syndrome KEY POINTS It is important to take a complete history and perform a careful examination in order to avoid confirmation bias when evaluating throwers with medial elbow pain. Lacertus syn- drome is a postexertional compartment syndrome, and the history can help elucidate this. The Lacertus syndrome is more common than pronator syndrome, which involves the me- dian nerve, and can be distinguished with a careful workup. Other more common pathol- ogies should be ruled out with a routine workup. Include inspection of the flexor pronator muscle group and consider evaluating after throwing when examining a thrower with postexertional elbow pain. HISTORY OF THE TECHNIQUE In 1959, George Bennett summarized his experiences caring for throwing athletes. The following paragraph is excerpted in its entirety from that article.1 “There is a lesion which produces a different syndrome. A pitcher in throwing a curveball is compelled to supinate his wrist with a snap at the end of his delivery. On examination, one will note distinct fullness over the pronator radii teres. These are covered by a strong fascial band, a portion of which is the attachment of the bi- ceps, which runs obliquely across the pronator muscle. A pitcher may be able to pitch for two or three innings but then the pain and swelling become so great that he has to retire. A simple linear and transverse division of the fascia covering the muscles has relieved tension on many occasions and rehabilitated these men so that they were able to return to the game.” This is the first known reference to a condition that has undoubtedly disabled many players and possibly ended careers of an untold number of throwing athletes. -
Anatomy, Biomechanics, Physiology, Diagnosis and Treatment of Teres
ANATOMY, BIOMECHANICS, PHYSIOLOGY, DIAGNOSIS AND TREATMENT OF TERES MAJOR STRAINS IN THE CANINE Laurie Edge-Hughes, BScPT, CAFCI, CCRT Four Leg Rehabilitation Therapy & The Canine Fitness Centre Ltd, Calgary, AB, Canada The Canadian Horse and Animal Physical Rehabilitation Assn. The Animal Rehab Institute, Loxahatchee, Florida, USA BACKGROUND The canine shoulder apparatus is unique as compared to other canine joints and also when compared to the human shoulder. When compared to the hind limb it is interesting to note that the front limb has no boney attachment to the axial skeleton in that there is no clavicle in the canine. This factor alone means that muscular strength and co-ordination is of utmost importance to full functioning of the front limb. When compared to the human shoulder, one obvious difference is that the shoulder joint is a weight bearing joint. The orientation of the canine scapula and humerus is vertical and the weight distribution is 60 to 65 % on the front legs and 40 – 35% on the hind legs. Essentially dogs are like ‘front wheel drive vehicles’, designed to propel themselves forward by primarily ‘pulling’ from the front end. This is why identification and treatment of front limb muscle injuries is critically important for athletic or just high energy dogs who are most prone to injuring shoulder muscles. The teres major muscle is one that is commonly strained, often unidentified and hence not as effectively treated as it could be in the active canine patient. ANATOMY The teres major muscle originates from the caudal angle and caudal edge of the scapula and inserts into the eminence on the proximal 1/3 of the medial surface of the humerus. -
Neurotization to Innervate the Deltoid and Biceps: 3 Cases
SCIENTIFIC ARTICLE Neurotization to Innervate the Deltoid and Biceps: 3 Cases Christopher J. Dy, MD, MSPH, Alison Kitay, MD, Rohit Garg, MBBS, Lana Kang, MD, Joseph H. Feinberg, MD, Scott W. Wolfe, MD Purpose To describe our experience using direct muscle neurotization as a treatment adjunct during delayed surgical reconstruction for traumatic denervation injuries. Methods Three patients who had direct muscle neurotization were chosen from a consecutive series of patients undergoing reconstruction for brachial plexus injuries. The cases are presented in detail, including long-term clinical follow-up at 2, 5, and 10 years with accompanying postoperative electrodiagnostic studies. Postoperative motor strength using British Medical Research Council grading and active range of motion were retrospectively extracted from the clinical charts. Results Direct muscle neurotization was performed into the deltoid in 2 cases and into the biceps in 1 case after delays of up to 10 months from injury. Two patients had recovery of M4 strength, and the other patient had recovery of M3 strength. All 3 patients had evidence on electrodiagnostic studies of at least partial muscle reinnervation after neurotization. Conclusions Direct muscle neurotization has shown promising results in numerous basic science investigations and a limited number of clinical cases. The current series provides additional clinical and electrodiagnostic evidence that direct muscle neurotization can successfully provide reinnervation, even after lengthy delays from injury to surgical treatment. Clinical relevance Microsurgeons should consider direct muscle neurotization as a viable adjunct treatment and part of a comprehensive reconstructive plan, especially for injuries associated with avulsion of the distal nerve stump from its insertion into the muscle. -
Anatomical Study of Pronator Teres Muscle Innervation and Clinical Significance in Nerve Transfer
Int. J. Morphol., 36(4):1500-1508, 2018. Anatomical Study of Pronator Teres Muscle Innervation and Clinical Significance in Nerve Transfer Estudio Anatómico de la Inervación del Músculo Pronador Redondo y Significado Clínico en la Transferencia Nerviosa Edie Benedito Caetano1; Luiz Angelo Vieira1; José João Sabongi Neto2; Maurício Benedito Ferreira Caetano2; Rodrigo Guerra Sabongi3; Luca Martinez4; Kelson Koiti Ogata4 & Eduardo Baldy de Sousa Boni4 CAETANO, E. B.; VIEIRA, L A.; SABONGI NETO, J. J. ; CAETANO, M. B. F.; SABONGI, R. G.; MARTINEZ, L.; OGATA, K. K. & BONI, E. B. S. Anatomical study of pronator teres muscle innervation and clinical significance in nerve transfer. Int. J. Morphol., 36(4):1500-1508, 2018. SUMMARY: The anatomical relationship of the median nerve and its innervation pattern are variable and may have direct implications in surgical procedures such as distal nerve transfers. The objective of this study was to evaluate the anatomical variations of pronator teres muscle (PTM) innervation and its clinical significance in nerve transfers. Data were collected regarding the number of median nerve branches, site of their origin, contribution with branches of other muscles and the possibility of transferring expendable branches of PTM to the anterior interosseous nerve (AIN) and radial nerve. The most common origin of the branches was proximal to the humeral intercondylar line. The presence of only one PTM branch was identified in 9 limbs, in which 6 was exclusive for this muscle. The majority of specimens presented more than one branch to the PTM, with two branches in 19, although only 6 of these did not share branches with other muscles.