Avian Specializations

Total Page:16

File Type:pdf, Size:1020Kb

Avian Specializations Avian specializations Chapter 17 Mesozoic bird radiations • Enantiornithes – metatarsals are fused differently than modern birds, also retained teeth – Dominant in the cretaceous • Ornithurines – appeared later in the cretaceous, variety of ecological types Modern birds • Neornithes – late cretaceous – about 9672 extant species – Split into two major groups • Palaeognathae (Ratites) • Neognathae Feathers • Calamus – anchors feather to skin • Rachis • Barbs Feathers • 5 types of feathers – Contour feathers • Remiges –wing feathers • Retrices – tail feathers – Semiplumes –large rachis with plumulaceous vanes – Down –entirely plumulaceous and rachis is shorter than the longest barb or absent – Bristles – stiff rachis and barbs only at the base or absent – Filoplumes –fine hairlike feather with few short barbs at the tip, used for sensory Skeleton • Pneumatic bones • Bone fifusions – Synsacrum – Pygostyle – Furcula – Tarsometatarsus – Tibiotarsus Muscles • Flight muscles account for 25 to 35 % of total body mass of strong fliers • With birds that rely more on running more mass may be in the leg muscles than in flight • Lig ht and dkdark meat – Dark meat has the presence of myoglobin which idiindicates a hig h capacity for aerobic metablibolism – Light meat has little capacity for aerobic metblitabolism Avian wing • Wing produces lift and forward motion. • Primaries are mostly responsible for propelling • SdiSecondaries for lift • Lift –vertical force equal or greater than the weight of the bird • Drag –force that is opposed to fdforward motion of the bdbird through the air Avian Wing • Wing loadings (mass of the bird divided by wing area) Flight • http://www. youtube. com/watch?v=ssrv89x7Q 2U • http://www. youtube. com/watch?v=31Xw75h AwIc • h//http://www.youtu be.com /watc h?QIfi9h?v=vQIsfi9vae Q Flight muscles • Pectoralis – pulls down on wing • Supracoracoideus – lifts wing • Both muscles originate on the sternum Basic wing types • A) dynamic soaring – needs strong persistent wind • B) Elliptical –forest species for rapid, slow flight and high maneuverability • C) High aspect ratio – typical of fast strong fliers • D) High lift – static soarers, marked slotting in primaries, seek out rising air masses Bird feet • A) anisodactyl • B) zygodactyl –toes 2 and 3 forward i.e. parrots and woodpeckers • C) heterodactyl –toes 3 and 4 forward, only in trogons • D) syndactyl – iei.e. belted kingfisher • E) pamprodactyl all toes forward, swifts Beaks Tongues • Some woodpecker tongues can be extended 4X the length of the beak, have barbs on the end for impaling bugs in wood tunnels • Hummingbirds and sunbirds the tip of their tongue is divided into thin hairlike projections that nectar adheres to by capillary force Digestive system • Crop – enlarged portion of the esophagus for temporary food storage, also used to feed nestlings, doves produce a nutritive fluid (crop milk) that they regurgitate for their offspring Digestive system • Stomach – 2 relatively distinct chambers – Proventriculus –anterior glandular stomach – Gizzard – posterior muscular stomach • A turkeys gizzard can crack nuts that require 50‐150 kg of pressure to break • Gut length changes –birds that eat different types of food over different season can change the length of their gut. (also a change in diges tive enzymes) Vision • Different eye shapes are basically a function of fitting a large eye in a small skull Hearing • For the most part birds hear about as well as humans, Owls being the main exception. • Owls have a facial ruff that acts as a parabolic sound reflector and they also have assymetitries in the shape of the ruff and the skull Olfaction • Most birds have a ppyoorly developed sense of smell • Some exceptions – Kiwi – Turkey Vulture Vocalizations • Bird songs are sppyecifically the breeding calls of many bird species • It is a learned behavior • Indigo Bunting • http://www.learnbirdsongs.com/birdsong.php?id=19 • Wood Thrush • http://www.learnbirdsongs.com/birdsong.php?id=32 • Lyre bird • http://www.youtube.com/watch?v=VjE0Kdfos4Y • Paired with visual displays • http://www.youtube.com/watch?v=ARVbLaYbSjo • http://www.youtube.com/watch?v=bRQgYjKaGek Mating systems • Two broad categories – Monogamy – Polygamy • Polygamy can be exhibited by: – Males = Polygyny – Females = Polyandry – Both sexes = Promiscuity Social Monogamy • Share responsibility for clutch but have extra‐ pair copulations • Benefits for both sexes – Increase fitness – Increase heterozygosity • Male benefits – Sire more offspring – Another male cares for his offspring – Spreading reproductive investment • Female benefits – All eggs fertilized – Increase fitness mating with higher quality male – Quasi nest parasitism Nests • Large variety in nests and nesting behavior • Not all birds construct nests or even care for their own eggs • Brood Parasites Eggs • Oviparity – why haven’t birds evolved viviparity? Viviparity has evolved many times and also in other sauropsids. What is the advantage of Oviparity in birds? Offspring • Two main types – Precocial – Altricial Migration • About 40% of bird species in Palearctic are migratory • Advantages = food resources, avoid temperature stress, longer summer activity periods • Cues –internal rhythms and external stimulus – Day length – best indicator .
Recommended publications
  • Uropygial Gland in Birds
    UROPYGIAL GLAND IN BIRDS Prepared by Dr. Subhadeep Sarker Associate Professor, Department of Zoology, Serampore College Occurrence and Location: • The uropygial gland, often referred to as the oil or preen gland, is a bilobed gland and is found at the dorsal base of the tail of most psittacine birds. • The uropygial gland is a median dorsal gland, one per bird, in the synsacro-caudal region. A half moon-shaped row of feather follicles of the upper median and major tail coverts externally outline its position. • The uropygial area is located dorsally over the pygostyle on the midline at the base of the tail. • This gland is most developed in waterfowl but very reduced or even absent in many parrots (e.g. Amazon parrots), ostriches and many pigeons and doves. Anatomy: • The uropygial gland is an epidermal bilobed holocrine gland localized on the uropygium of most birds. • It is composed of two lobes separated by an interlobular septum and covered by an external capsule. • Uropygial secretory tissue is housed within the lobes of the gland (Lobus glandulae uropygialis), which are nearly always two in number. Exceptions occur in Hoopoe (Upupa epops) with three lobes, and owls with one. Duct and cavity systems are also contained within the lobes. • The architectural patterns formed by the secretory tubules, the cavities and ducts, differ markedly among species. The primary cavity can comprise over 90% of lobe volume in the Oilbird (Steatornis caripensis) and some woodpeckers and pigeons. • The gland is covered by a circlet or tuft of down feathers called the uropygial wick in many birds.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Avian Tail Ontogeny, Pygostyle Formation, and Interpretation of Juvenile Mesozoic Specimens Dana J
    Clemson University TigerPrints Publications Biological Sciences 6-13-2018 Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Dana J. Rashid Montana State University-Bozeman Kevin Surya Montana State University-Bozeman Luis M. Chiappe Dinosaur Institute, Los Angeles County Museum of Natural History Nathan Carroll Dinosaur Institute, Los Angeles County Museum of Natural History Kimball L. Garrett Section of Ornithology, Los Angeles County Museum of Natural History See next page for additional authors Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use the publisher's recommended citation. https://www.nature.com/articles/s41598-018-27336-x#rightslink This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Authors Dana J. Rashid, Kevin Surya, Luis M. Chiappe, Nathan Carroll, Kimball L. Garrett, Bino Varghese, Alida Bailleul, Jingmai K. O'Connor, Susan C. Chapman, and John R. Horner This article is available at TigerPrints: https://tigerprints.clemson.edu/bio_pubs/112 www.nature.com/scientificreports OPEN Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Received: 27 March 2018 Dana J. Rashid1, Kevin Surya2, Luis M. Chiappe3, Nathan Carroll3, Kimball L. Garrett4, Bino Accepted: 23 May 2018 Varghese5, Alida Bailleul6,7, Jingmai K. O’Connor 7, Susan C. Chapman 8 & John R. Horner1,9 Published: xx xx xxxx The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored.
    [Show full text]
  • Avian Tail Ontogeny, Pygostyle Formation, and Interpretation of Juvenile Mesozoic Specimens Received: 27 March 2018 Dana J
    www.nature.com/scientificreports OPEN Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Received: 27 March 2018 Dana J. Rashid1, Kevin Surya2, Luis M. Chiappe3, Nathan Carroll3, Kimball L. Garrett4, Bino Accepted: 23 May 2018 Varghese5, Alida Bailleul6,7, Jingmai K. O’Connor 7, Susan C. Chapman 8 & John R. Horner1,9 Published: xx xx xxxx The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored. This defcit has hampered eforts to efectively identify intermediate species during the Mesozoic transition to short tails. Here we show that fusion of distal vertebrae into the pygostyle structure does not occur in extant birds until near skeletal maturity, and mineralization of vertebral processes also occurs long after hatching. Evidence for post-hatching pygostyle formation is also demonstrated in two Cretaceous specimens, a juvenile enantiornithine and a subadult basal ornithuromorph. These fndings call for reinterpretations of Zhongornis haoae, a Cretaceous bird hypothesized to be an intermediate in the long- to short-tailed bird transition, and of the recently discovered coelurosaur tail embedded in amber. Zhongornis, as a juvenile, may not yet have formed a pygostyle, and the amber-embedded tail specimen is reinterpreted as possibly avian. Analyses of relative pygostyle lengths in extant and Cretaceous birds suggests the number of vertebrae incorporated into the pygostyle has varied considerably, further complicating the interpretation of potential transitional species. In addition, this analysis of avian tail development reveals the generation and loss of intervertebral discs in the pygostyle, vertebral bodies derived from diferent kinds of cartilage, and alternative modes of caudal vertebral process morphogenesis in birds.
    [Show full text]
  • A Late Cretaceous Diversification of Asian Oviraptorid Dinosaurs
    www.nature.com/scientificreports OPEN A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species Received: 10 March 2016 Accepted: 06 October 2016 preserved in an unusual posture Published: 10 November 2016 Junchang Lü1, Rongjun Chen2, Stephen L. Brusatte3, Yangxiao Zhu2 & Caizhi Shen1 Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised- head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction. Oviraptorosaurs are some of the most unusual dinosaurs. These bird-like, feathered theropods diverged dra- matically from their close cousins, evolving shortened toothless skulls with a staggering diversity of pneumatic cranial crests in derived forms1.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • (Aves: Palaeognathae) from the Paleocene (Tiffanian) of Southern California
    PaleoBios 31(1):1–7, May 13, 2014 A lithornithid (Aves: Palaeognathae) from the Paleocene (Tiffanian) of southern California THOMAS A. STIDHAM,1* DON LOFGREN,2 ANDREW A. FARKE,2 MICHAEL PAIK,3 and RACHEL CHOI3 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; e-mail: [email protected], corresponding author. 2Raymond M. Alf Museum of Paleontology, Claremont, California 91711, USA. 3 The Webb Schools, Claremont, California 91711, USA The proximal end of a bird humerus recovered from the Paleocene Goler Formation of southern California is the oldest Cenozoic record of this clade from the west coast of North America. The fossil is characterized by a relatively large, dorsally-positioned head of the humerus and a subcircular opening to the pneumotricipital fossa, consistent with the Lithornithidae among known North American Paleocene birds, and is similar in size to Lithornis celetius. This specimen from the Tiffanian NALMA extends the known geographic range of lithornithids outside of the Rocky Mountains region in the United States. The inferred coastal depositional environment of the Goler Formation is consistent with a broad ecological niche of lithornithids. The age and geographic distribution of lithornithids in North America and Europe suggests these birds dispersed from North America to Europe in the Paleocene or by the early Eocene. During the Paleogene the intercontinental dispersal of lithornithids likely occurred alongside other known bird and mammalian movements that were facilitated by climatic and sea level changes. Keywords: bird humerus, fossil, Lithornithidae, Goler Formation, Tiffanian, California INTRODUCTION largely unknown in North America.
    [Show full text]
  • Zoologische Mededelingen 79-03
    Belatedly hatching ornithology collections at the National Museum of Ireland J.D. Sigwart, E. Callaghan, A. Colla, G.J. Dyke, S.L. McCaffrey & N.T. Monaghan Sigwart, J.D., E. Callaghan, A. Colla, G.J. Dyke, S.L. McCaffrey & N.T. Monaghan. Belatedly hatching ornithology collections at the National Museum of Ireland. Zool. Med. Leiden 79-3 (2), 30-ix-2005, 19-28.— ISSN 0024-0672. Julia D. Sigwart, & Nigel T. Monaghan, Natural History Division, National Museum of Ireland, Merrion Street, Dublin 2, Ireland (e-mail: [email protected]; [email protected]). Alessia Colla, c/o European Career Evolution 19 The Priory, Old Chapel, Bandon, Co. Cork, Ireland (e-mail: [email protected]). Eric Callaghan, Gareth J. Dyke, & Sarah L. McCaffrey, Department of Zoology, University College Dub- lin, Belfield, Dublin 4, Ireland (e-mail: [email protected]; [email protected]; sarahmccaffrey@hotmail. com). Keywords: non-passerine birds; museum collections; museum education; collection database. For the first time, summary details are presented for the ornithological collections of the National Museum of Ireland (Natural History) (NMINH). To date, new cataloguing efforts in collaboration with Univer- sity College Dublin have documented close to 10,000 non-passerine bird skins and taxidermy mounts. Introduction The Natural History Museum in Dublin is well known internationally as an intact example of a Victorian-style cabinet museum (O’Riordan, 1976; Gould, 1994). Founded in 1792, the zoological collections grew rapidly since their inception, soon demanding their installation in a dedicated building in 1857. Twenty years later, in 1877, steward- ship of the Museum was transferred from the Royal Dublin Society (RDS) to the State.
    [Show full text]
  • Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
    J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These.
    [Show full text]
  • The Morphology of Chiappeavis Magnapremaxillo (Pengornithidae: Enantiornithes) and a Comparison of Aerodynamic Function in Early Cretaceous Avian Tail Fans Jingmai K
    第55卷 第1期 古 脊 椎 动 物 学 报 pp. 41-58 2017年1月 VERTEBRATA PALASIATICA figs. 1-8 The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans Jingmai K. O’CONNOR1 ZHENG Xiao-Ting2,3 HU Han1 WANG Xiao-Li2 ZHOU Zhong-He1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276000) (3 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300) Abstract We provide a complete description of the skeletal anatomy of the holotype of Chiappeavis magnapremaxillo, the first enantiornithine to preserve a rectricial fan, suggesting that possibly rectricial bulbs were present in basal members of this clade. Notably, Chiappeavis preserves a primitive palatal morphology in which the vomers reach the premaxillae similar to Archaeopteryx but unlike the condition in the Late Cretaceous enantiornithine Gobipteryx. If rectricial bulbs were present, pengornithid pygostyle morphology suggests they were minimally developed. We estimate the lift generated by the tail fan preserved in this specimen and compare it to the tail fans preserved in other Early Cretaceous birds. Aerodynamic models indicate the tail of Chiappeavis produced less lift than that of sympatric ornithuromorphs. This information provides a possible explanation for the absence of widespread aerodynamic tail morphologies in the Enantiornithes. Key words Mesozoic, Jehol Biota, Aves, rectrix Citation O’Connor J K, Zheng X T, Hu H et al., 2016. The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans.
    [Show full text]
  • Basic Avian Anatomy
    Basic Avian Anatomy Peter S. Sakas DVM, MS Niles Animal Hospital and Bird Medical Center 7278 N. Milwaukee Ave. Niles, IL 60714 (847)-647-9325 FAX (847)-647-8498 Introduction Everyone is familiar with the anatomy of mammals and may also have some knowledge of a few avian anatomical characteristics. The purpose of this discussion is to provide a deeper insight into avian anatomy and provide some comparisons to mammalian features. An understanding of avian anatomy is essential for avian practitioners. Sources of information for this discussion include the fine work of Dr. Howard Evans and Dr. Robert Clipsham. Feathers Feathers are unique to birds. Birds grow feathers in and around eight well- defined feather tracts or pterylae; they are not haphazardly arranged. Feathers compromise from 10-20% of a bird’s body weight. Each feather can be raised by a separate skin muscle (‘raising their hackles’ or fanning tail).Feathers are outgrowths of the feather follicles of the skin and are the counterpart to hairs and hair follicles in mammals. Feathers provide many functions for birds, attracts mate or deceives predator, heat control, flight, aerodynamic streamlining and water buoyancy. Feathers are not really “bird hairs” but are probably modified scales passed down from their reptilian ancestors. Feathers can be grouped into three categories: 1) Contour feathers or penna – These feathers cover the body, wings and tail, and are the feathers most obviously visible on the bird. 2) Down feathers or plumules – These tiny, soft down feathers are found associated with contour feathers and/or the spaces between them. 3) Tufted bristle feathers or filoplumes- Feathers which are modified and appear as ‘eyelashes and nose hairs.’ Contour Feathers The contour feather consists of a shaft with a vane.
    [Show full text]
  • Phylogeny, Transposable Element and Sex Chromosome Evolution of The
    bioRxiv preprint doi: https://doi.org/10.1101/750109; this version posted August 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, transposable element and sex chromosome evolution of the basal lineage of birds Zongji Wang1,2,3,* Jilin Zhang4,*, Xiaoman Xu1, Christopher Witt5, Yuan Deng3, Guangji Chen3, Guanliang Meng3, Shaohong Feng3, Tamas Szekely6,7, Guojie Zhang3,8,9,10,#, Qi Zhou1,2,11,# 1. MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China 2. Department of Molecular Evolution and Development, University of Vienna, Vienna, 1090, Austria 3. BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China 4. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden 5. Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA 6. State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China 7. Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA1 7AY, UK 8 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 9. Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark 10. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China 11. Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University * These authors contributed equally to the work.
    [Show full text]