Traditional 4 Tier Split
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treatment of Diabetes Mellitus
TREATMENT OF DIABETES MELLITUS DIABETES is a condition that affects how the body makes energy from food. Food is broken down into sugar (glucose) in the body and released into the blood. When the blood sugar level rises after a meal, insulin responds to let the sugar into the cells to be used as energy. In diabetes, the body either does not make enough insulin or it stops responding to insulin as well as it should. This results in sugar staying in the blood and leads to serious health problems over time. DIAGNOSIS OF DIABETES1 • A1C Test: Lab test measuring average blood sugar over past two to three months • Fasting Blood Sugar Test: Lab test measuring blood sugar after eight hours of no food or drink • Oral Glucose Tolerance Test (OGTT): Measures blood sugar before and two hours after drinking a specific sugary liquid • Random Blood Sugar Test: Measures blood sugar at a moment in time, without any kind of preparation (like fasting) FASTING BLOOD ORAL GLUCOSE TOLERANCE RANDOM BLOOD RESULT A1C TEST SUGAR TEST TEST SUGAR TEST Diabetes ≥ 6.5% ≥126 mg/dL ≥ 200 mg/dL ≥ 200 mg/dL Prediabetes 5.7 – 6.4% 100 – 125 mg/dL 140 – 199 mg/dL N/A Normal < 5.7% ≤99 mg/dL < 140 mg/dL N/A NON-DRUG TREATMENTS2 THERAPY COST WHAT TO EXPECT Diet (Mediterranean diet) and exercise (30 minutes a day, five days a week of moderate- Weight loss $-$$ intensity exercise); 7% weight loss decreases risk of diabetes3 Psychological intervention $$-$$$ Psychotherapy may reduce diabetic distress and improve glycemic control4,5 nationalcooperativerx.com PRESCRIPTION TREATMENTS -
3-Local-Anesthetics.Pdf
Overview • Local anesthetics produce a transient and reversible loss of sensation (analgesia) in a circumscribed region of the body without loss of consciousness. • Normally, the process is completely reversible. • Local anesthetics are generally classified as either esters or amides and are usually linked to: – a lipophilic aromatic group – to a hydrophilic, ionizable tertiary (sometimes secondary) amine. • Most are weak bases with pKa ( 8 – 9), and at physiologic pH they are primarily in the charged, cationic form. • The potency of local anesthetics is positively correlated with their lipid solubility, which may vary 16-fold, and negatively correlated with their molecular size. • These anesthetics are selected for use on the basis of: 1. the duration of drug action • Short: 20 min • Intermediate: 1—1.5 hrs • Long: 2—4 hrs 2. effectiveness at the administration site 3. potential for toxicity Mechanism of action Local anesthetics act by blocking sodium channels and the conduction of action potentials along sensory nerves. • Blockade is voltage dependent and time dependent. a. At rest, the voltage-dependent sodium (Na+) channels of sensory nerves are in the resting (closed) state. • Following the action potential the Na+ channel becomes active (open) and then converts to an inactive (closed) state that is insensitive to depolarization. • Following repolarization of the plasma membrane there is a slow reversion of channels from the inactive to the resting state, which can again be activated by depolarization. • During excitation the cationic charged form of local anesthetics interacts preferentially with the inactivated state of the Na+ channels on the inner aspect of the sodium channel to block sodium current and increase the threshold for excitation. -
Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11. -
PRODUCT MONOGRAPH ELAVIL® Amitriptyline Hydrochloride Tablets
PRODUCT MONOGRAPH ELAVIL® amitriptyline hydrochloride tablets USP 10, 25, 50 and 75 mg Antidepressant AA PHARMA INC. DATE OF PREPARATION: 1165 Creditstone Road Unit #1 August 29, 2018 Vaughan, ON L4K 4N7 Control No.: 217626 1 PRODUCT MONOGRAPH ELAVIL® amitriptyline hydrochloride tablets USP 10, 25, 50, 75 mg THERAPEUTIC CLASSIFICATION Antidepressant ACTIONS AND CLINICAL PHARMACOLOGY Amitriptyline hydrochloride is a tricyclic antidepressant with sedative properties. Its mechanism of action in man is not known. Amitriptyline inhibits the membrane pump mechanism responsible for the re-uptake of transmitter amines, such as norepinephrine and serotonin, thereby increasing their concentration at the synaptic clefts of the brain. Amitriptyline has pronounced anticholinergic properties and produces EKG changes and quinidine-like effects on the heart (See ADVERSE REACTIONS). It also lowers the convulsive threshold and causes alterations in EEG and sleep patterns. Orally administered amitriptyline is readily absorbed and rapidly metabolized. Steady-state plasma concentrations vary widely and this variation may be genetically determined. Amitriptyline is primarily excreted in the urine, mostly in the form of metabolites, with some excretion also occurring in the feces. INDICATIONS AND CLINICAL USE ELAVIL® (amitriptyline hydrochloride) is indicated in the drug management of depressive illness. ELAVIL® may be used in depressive illness of psychotic or endogenous nature and in selected patients with neurotic depression. Endogenous depression is more likely to be alleviated than are other depressive states. ELAVIL® ®, because of its sedative action, is also of value in alleviating the anxiety component of depression. As with other tricyclic antidepressants, ELAVIL® may precipitate hypomanic episodes in patients with bipolar depression. These drugs are not indicated in mild depressive states and depressive reactions. -
(KPIC) PPO and Out-Of- Area Indemnity (OOA) Drug Formulary with Specialty Drug Tier
Kaiser Permanente Insurance Company (KPIC) PPO and Out-of- Area Indemnity (OOA) Drug Formulary with Specialty Drug Tier This Drug Formulary was updated: September 1, 2021 NOTE: This drug formulary is updated often and is subject to change. Upon revision, all previous versions of the drug formulary are no longer in effect. This document contains information regarding the drugs that are covered when you participate in the California Nongrandfathered PPO and Out-of- Area Indemnity (OOA) Health Insurance Plans with specialty drug tier offered by Kaiser Permanente Insurance Company (KPIC) and fill your prescription at a MedImpact network pharmacy. Access to the most current version of the Formulary can be obtained by visiting kp.org/kpic-ca-rx-ppo-ngf. For help understanding your KPIC insurance plan benefits, including cost sharing for drugs under the prescription drug benefit and under the medical benefit, please call 1-800-788-0710 or 711 (TTY) Monday through Friday, 7a.m. to 7p.m. For help with this Formulary, including the processes for submitting an exception request and requesting prior authorization and step therapy exceptions, please call MedImpact 24 hours a day, 7 days a week, at 1-800-788-2949 or 711 (TTY). For cost sharing information for the outpatient prescription drug benefits in your specific plan, please visit: kp.org/kpic-ca-rx-ppo-ngf. For help in your preferred language, please see the Kaiser Permanente Insurance Company Notice of Language Assistance in this document. KPIC PPO NGF Table of Contents Informational Section................................................................................................................................2 -
Comparative Review of Oral Hypoglycemic Agents in Adults
SECTION 18.5 Comparative Review of Oral Hypoglycemic Agents in Adults Harinder Chahal For WHO Secretariat Table of Contents Acronyms: ............................................................................................................................................................................... 3 I. Background and Rationale for the review: ....................................................................................................................... 4 II. Medications under comparative review: ......................................................................................................................... 4 Table 1 - New oral hypoglycemic agents for comparison with current EML agents .......................................................... 5 III. Literature searches and methodology: ............................................................................................................................ 5 1. Title Search Results: .................................................................................................................................................... 6 2. Statement about quality of evidence: ........................................................................................................................ 6 IV. Clinical efficacy and safety evaluation: ............................................................................................................................ 6 1. DPP-4 Inhibitors (Sitagliptin, Saxagliptin) and Metformin: ........................................................................................ -
Prolonged Release of the Local Anesthetic Butamben for Potential Use in Pain Management
Pharmacology & Pharmacy, 2012, 3, 291-294 291 http://dx.doi.org/10.4236/pp.2012.33038 Published Online July 2012 (http://www.SciRP.org/journal/pp) Prolonged Release of the Local Anesthetic Butamben for Potential Use in Pain Management Ashish Rastogi1,2, Salomon Stavchansky2, Phillip D. Bowman1* 1US Army Institute of Surgical Research, Fort Sam Houston, USA; 2Division of Pharmaceutics, College of Pharmacy, The Univer- sity of Texas at Austin, Austin, USA. Email: [email protected], *[email protected] Received March 20th, 2012; revised April 29th, 2012; accepted May 11th, 2012 ABSTRACT Continuous delivery of local anesthetics might be useful for management of localized and chronic pain. Controlled re- lease injectable anesthetics have been developed but they can deliver the drug for only few days and the release is not zero-order. A drug delivery system (DDS) consisting of a perforated reservoir for drug containment and release and its potential for management of chronic pain is described. Proof of principle is detailed for long-term zero order delivery of butamben. In this study, the DDS was a polyimide tube with a 0.20 mm hole and butamben release was evaluated in vitro. It is envisioned that the DDS could be implanted in proximity to a nerve, enervating the pain source, for long-term control of chronic pain. Keywords: Controlled Release; Prolonged Drug Delivery; Pain Management; Butamben 1. Introduction operated, and not suitable for everyone [9]. Persistent cerebrospinal fluid leak during its insertion is also a Long-term drug therapy for pain management is chal- known complication [10]. -
15-CETY-040, Cetecaine Gel Sell Sheet FA No Crops
Cetacaine® TOPICAL ANESTHETIC GEL (Benzocaine 14.0%, Butamben 2.0%, Tetracaine Hydrochloride 2.0%) Proven more effective than benzocaine alone1 Cetacaine® Topical Anesthetic Gel is a fast-acting, long-lasting prescription topical anesthetic. Applied directly to the mucous membrane, Cetacaine is primarily used to control pain and ease discomfort at the application site. The protective pump-top jar controls the amount of Cetacaine dispensed while keeping the remaining contents safe from cross contamination. The outside lid helps to keep the pump surface clean and intact. Please see the Brief Summary of the Prescribing Information on the reverse side. You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.fda.gov/medwatch, or call 1-800-FDA-1088. Cetacaine Gel is indicated for anesthesia of all Description Size Item No. accessible mucous membrane except the eyes. Cetacaine Topical Anesthetic Gel 32 g 0217 Cetacaine is not for injection. Features & Benefits • Onset of action: Approximately 30 seconds* • Applies evenly and consistently, tissue need not be dried • Duration of action: 30-60 minutes* • Reacts with body temperature to melt and absorb quickly into tissue • Controls pain and eases discomfort at the application site • Made in USA • Pleasant strawberry flavor • Study shows Cetacaine’s triple formula is more effective than • Lubricating qualities Benzocaine alone Important Safety Information • On rare occasions, methemoglobinemia has been reported in • The most common adverse reaction caused by local anesthetics is connection with the use of benzocaine-containing products. contact dermatitis characterized by erythema and pruritus that If a patient becomes cyanotic, treat appropriately to counteract may progress to vesiculation and oozing. -
Procaine Elisa Kit Instructions Product #103219 & 103216 Forensic Use Only
Neogen Corporation 944 Nandino Blvd., Lexington KY 40511 USA 800/477-8201 USA/Canada | 859/254-1221 Fax: 859/255-5532 | E-mail: [email protected] | Web: www.neogen.com/Toxicology PROCAINE ELISA KIT INSTRUCTIONS PRODUCT #103219 & 103216 FORENSIC USE ONLY INTENDED USE: For the determination of trace quantities of Procaine and/or other metabolites in human urine, blood, oral fluid. DESCRIPTION Neogen Corporation’s Procaine ELISA (Enzyme-Linked ImmunoSorbent Assay) test kit is a qualitative one-step kit designed for use as a screening device for the detection of drugs and/or their metabolites. The kit was designed for screening purposes and is intended for forensic use only. It is recommended that all suspect samples be confirmed by a quantitative method such as gas chromatography/mass spectrometry (GC/MS). ASSAY PRINCIPLES Neogen Corporation’s test kit operates on the basis of competition between the drug or its metabolite in the sample and the drug-enzyme conjugate for a limited number of antibody binding sites. First, the sample or control is added to the microplate. Next, the diluted drug-enzyme conjugate is added and the mixture is incubated at room temperature. During this incubation, the drug in the sample or the drug-enzyme conjugate binds to antibody immobilized in the microplate wells. After incubation, the plate is washed 3 times to remove any unbound sample or drug-enzyme conjugate. The presence of bound drug-enzyme conjugate is recognized by the addition of K-Blue® Substrate (TMB). After a 30 minute substrate incubation, the reaction is halted with the addition of Red Stop Solution. -
Cetacaine Gel Prescribing Information
colored skin (cyanosis); headache; rapid heart rate; shortness of breath; who are hypersensitive to any of its ingredients or to patients known to have lightheadedness; or fatigue. cholinesterase deficiencies. Tolerance may vary with status of the patient. Hypersensitivity Reactions: Unpredictable adverse reactions (i.e. hypersensitivity, Cetacaine Topical Anesthetic Gel should not be used under dentures or cotton including anaphylaxis) are extremely rare. Localized allergic reactions may occur rolls, as retention of the active gel ingredients under a denture or cotton roll could after prolonged or repeated use of any aminobenzoate anesthetic. The most possibly cause an escharotic effect. Routine precaution for the use of any topical Only common adverse reaction caused by local anesthetics is contact dermatitis anesthetic should be observed when using Cetacaine Topical Anesthetic Gel. characterized by erythema and pruritus that may progress to vesiculation and oozing. This occurs most commonly in patients following prolonged How Supplied Cetacaine Topical Anesthetic Gel (Strawberry), 32 g jar Active Ingredients: self-medication, which is contraindicated. If rash, urticaria, edema, or other Benzocaine ...................................................................14.0% manifestations of allergy develop during use, the drug should be discontinued. NDC 10223-0217-3 To minimize the possibility of a serious allergic reaction, Cetacaine Topical Item# 0217 Butamben .......................................................................2.0% -
Utah Medicaid Pharmacy and Therapeutics Committee Drug
Utah Medicaid Pharmacy and Therapeutics Committee Drug Class Review DPP-4 Inhibitor Products AHFS Classification: 68:20.05 Dipeptidyl Peptidase-4 Inhibitors Alogliptin (Nesina) Alogliptin and Metformin (Kazano) Alogliptin and Pioglitazone (Oseni) Linagliptin (Tradjenta) Linagliptin and Empagliflozin (Glyxambi) Linagliptin and Metformin (Jentadueto, Jentadueto XR) Saxagliptin (Onglyza) Saxagliptin and Dapagliflozin (Qtern) Saxagliptin and Metformin (Kombiglyze XR) Sitagliptin (Januvia) Sitagliptin and Metformin (Janumet, Janumet XR) Final Report November 2017 Review prepared by: Elena Martinez Alonso, B.Pharm., MSc MTSI, Medical Writer Valerie Gonzales, Pharm.D., Clinical Pharmacist Vicki Frydrych, Pharm.D., Clinical Pharmacist Joanita Lake, B.Pharm., MSc EBHC (Oxon), Assistant Professor University of Utah College of Pharmacy Michelle Fiander, MA, MLIS, Systematic Review/Evidence Synthesis Librarian Joanne LaFleur, Pharm.D., MSPH, Associate Professor University of Utah College of Pharmacy University of Utah College of Pharmacy, Drug Regimen Review Center Copyright © 2017 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved 1 Contents List of Abbreviations .................................................................................................................................... 3 Executive Summary ...................................................................................................................................... 4 Introduction .................................................................................................................................................. -
Quinidine, Beta-Blockers, Diphenylhydantoin, Bretylium *
Pharmacology of Antiarrhythmics: Quinidine, Beta-Blockers, Diphenylhydantoin, Bretylium * ALBERT J. WASSERMAN, M.D. Professor of Medicine, Chairman, Division of Clinical Pharmacology, Medical College of Virginia, Health Sciences Division of Virginia Commonwealth University, Richmond, Virginia JACK D. PROCTOR, M.D. Assistant Professor of Medicine, Medical College of Virginia, Health Sciences Division of Virginia Commonwealth University, Richmond, Virginia The electrophysiologic effects of the antiar adequate, controlled clinical comparisons are virtu rhythmic drugs, presented elsewhere in this sym ally nonexistent. posium, form only one of the bases for the selec A complete presentation of the non-electro tion of a therapeutic agent in any given clinical physiologic pharmacology would include the follow situation. The final choice depends at least on the ing considerations: following factors: 1. Absorption and peak effect times 1. The specific arrhythmia 2. Biotransformation 2. Underlying heart disease, if any 3. Rate of elimination or half-life (t1d 3. The degree of compromise of the circula 4. Drug interactions tion, if any 5. Toxicity 4. The etiology of the arrhythmia 6. Clinical usefulness 5. The efficacy of the drug for that arrhythmia 7. Therapeutic drug levels due to that etiology 8. Dosage schedules 6. The toxicity of the drug, especially in the As all of the above data cannot be presented in given patient with possible alterations in the limited space available, only selected items will volume of distribution, biotransformation, be discussed. Much of the preceding information and excretion is available, however, in standard texts ( 1 7, 10). 7. The electrophysiologic effects of the drug (See Addendum 1) 8. The routes and frequency of administration Quinidine.