Wild Grape Germplasms in Japan

Total Page:16

File Type:pdf, Size:1020Kb

Wild Grape Germplasms in Japan Adv. Hort. Sci., 2014 28(4): 214-224 Wild grape germplasms in Japan H. Yamashita*, R. Mochioka** * Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi, Japan. ** Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita, Kagawa, Japan. Key words: anthocyanins, breeding, classification, geographic distribution, growth cycle, Vitis. Abstract: In Japan, seven species and eight varieties of wild grapes were identified, among which the main species are Vi- tis coignetiae Pulliat, V. flexuosa Thunb., and V. ficifolia Bunge var. lobata (Regel) Nakai (syn. V. thunbergii Sieb. et Zucc.). This paper summarizes the identification and classification of wild grapes native to Japan based on the past reports. Their distributions in Japan and physiological and ecological traits are also reviewed for effective practical use for grape breeding in the future. 1. Introduction cies found in Japan. Many other species exist locally in limited areas. In addition, researchers from Osaka Pre- It is thought that ancestors of grape (genus Vitis) ap- fecture University discovered Shiohitashibudou (tenta- peared during the first half of the Cretaceous period. They tive name) (Nakagawa et al., 1991). The geographical then spread around the world according to environmental distribution of the wild grapes native to Japan are shown and anthropogenic influences, and now comprise three ma- in figures 1-4. These figures were created from a site jor groups of species: European, North American, and East survey from Hokkaido to Okinawa starting in 1973, and Asian species, which differ in their physiological and eco- were made based on past records and reports using con- logical characteristics (Horiuchi and Matsui, 1996). Wild served (pressed) leaf specimens from Hokkaido Univer- grapes native to Japan belong to the group comprising the sity, Tokyo Metropolitan University, Kyoto University, East Asian species. Only a few reports on wild grape spe- Niigata University, Kumamoto University (Japan), and cies, including classification, physiological, and ecological Taiwan University (Taiwan). characterizations, have been published so far (Horiuchi and Matsui, 1996). Nevertheless, the importance of wild grapes Yamabudou, Vitis coingnetiae Pulliat (Fig. 1) as genetic resource for grape breeding has gradually been This species is widely distributed from level ground recognized because some wild grapes show superior traits to the lowest mountain areas in Hokkaido; from the low- towards global warming in terms of sustainable berry pro- est areas in the mountains to the mountain zone in the duction under hot and humid conditions. Tohoku district (northeastern region of Japan); from the This paper describes the identification and classifica- mountain zone to the alpine region in the Chubu district tion of wild grapes native to Japan. Their physiological (central region of Japan); and in the alpine regions of the and ecological traits, as well as their utilization are also Kinki, Chugoku, and Shikoku districts. It is thought that reviewed by focusing on the latest research findings re- this species is also present in a limited area of the alpine garding wild grapes native to Japan. regions in the Kyushu district, but it has not yet been dis- covered around Mt. Aso, which is consistent with the fact that we could not find any pressed leaf specimen in the 2. Geographical distribution universities located in the Kyushu distinct. It is notewor- thy that this species is not distributed in South Korea, This, and previous studies, found that seven Vitis spe- China, and neighboring countries; including Far Eastern cies and eight varieties are distributed throughout Japan, Russia. However, it has been confirmed that Yamabudou from Hokkaido (northern region) to Okinawa (southern grows naturally in the South Chishima and Sakhalin dis- region) (Table 1) (Nakagawa et al., 1991). Of these, Yam- tricts (Horikawa, 1972). abudo, Ebizuru, and Sankakuzuru are the three main spe- Sankakuzuru (Gyojanomizu), V. flexuosa Thunb. (Fig. 2) Received for publication 17 September 2014 This species is distributed in the mid regions of the Accepted for publication 14 November 2014 Yamabudou (Fig. 1) and Ebizuru (Fig. 3) ranges, overlap- 214 Table 1 - Systematic and geographical distribution of wild grapes native to Japan (Nakagawa et al., 1991) Species or varieties Japanese name Locality where grown Vitis coignetiae Pulliat Yamabudou Hokkaido, Honshu, Shikoku Vitis coignetiae Pulliat var. glabrescens Hara Takeshimayamabudou Hokkaido, Honshu Vitis flexuosa Thunb. Sankakuzuru (Gyojanomizu) Honshu, Shikoku, Kyusyu Vitis flexuosa Thunb. var. rufo-tomentosa Makino Kesankakuzuru Southern Honshu, Shikoku Vitis flexuosa Thunb. var. tsukubana Makino Usugesankakuzuru Northern Honshu Vitis flexuosa Thunb. var. crassifolia Hara Atsubasankakuzuru Shikoku Vitis saccharifera Makino Amazuru (Otokobudou) Southern Honshu, Shikoku Vitis yokogurana Makino Yokogurabudou Shikoku (Kochi Pref.) Vitis ficifolia Bunge var. lobata (Regel) Nakai Ebizuru (z) All over Japan (Vitis thunbergii Sieb. et Zucc.) Vitis ficifolia Bunge var. izu-insularis Hara Shititouebizuru Izu Islands Vitis ficifolia Bunge var. sinuata Hara Kikubaebizuru Southern Honshu, Shikoku, Kyusyu Vitis ficifolia Bunge var. ganebu Hatusima Ryuukyuuganebu Amami Islands, Okinawa Islands, Yaeyama Islands Vitis austrokoreana Hatusima Kenashiebizuru Tsushima Islands Vitis kiusiana Momiyama Kumagawabudou Kyushyu (Kumamoto pref., Kagoshima pref.) Vitis shiragai Makino Shiragabudou Honshu (Okayama pref.) Vitis sp. Shiohitashibudou (tentative) Kyusyu (Kagoshima pref.) (z) used in some classifications as a species (thunbergii). Fig. 1 - Geographic distribution of Vitis coignetiae Pulliat (Nakagawa Fig. 2 - Geographic distribution of Vitis flexuosa Thunb. (Nakagawa et et al., 1986). al., 1986). 215 ping with the two species, and is found in slightly lower al- of Japan. Takeshimayamabudou, a variety of Yamabudou titude areas than Yamabudou (Fig. 1). We can usually find (V. coingnetiae), was discovered in Hokkaido (around this species from the lowlands to the mountainous area of Lake Akan) and Nagano prefecture. It has no hairiness on the Tohoku district or the Chubu district; it does not grow the lower leaf surface and a thinner leaf compared to Yam- naturally in Hokkaido. abudou. Kumagawabudou has prickly shoots and ovoid leaves; one wild grape (V. davidii) with prickly shoots Ebizuru, V. ficifolia Bunge var. lobata (Regel) Nakai (Fig. 3) grows naturally in China, however, it differs significantly This species is one of the most widespread Vitis species from Kumagawabudou in its morphological characteris- in Japan. Its distribution extends from the southern Hok- tics. Shichitouebizuru grows in seaside areas of seven is- kaido region to the flatlands and mountainous terrain in lands of Izu. Moreover, its fruit-set is the highest among the Okinawa district; it can be found in a wide variety of all wild grapes native to Japan. habitats, including both the seashore and urban districts. This species is considered to be highly adaptable to the environment, thus it has a wide distribution compared with 3. The classification of Japanese wild grapes other Vitis species. As a result, many variants of morpho- logical and physiological traits are found in this species as As genus Vitis is mainly classified by morphology, a result of adaptation to local climates. Ryuukyuuganebu, some taxa may be taken as different classifications even Shichitouebizuru, and Kikubaebizuru are varieties belong- if they are the same grape. For example, Shiragabudou ing to V. ficifolia. Kenashiebizuru is also closely related to has two scientific names, Vitis shiragai Makino (Makino, V. ficifolia, although its scientific name is given as V. aus- 1918) and Vitis amurensis Rupr. (Ohwi, 1953). In this sec- koreana Hatusima. These grapes are generally included in tion, wild grapes native to Japan are classified concisely the V. ficifolia group. based on chemical, biochemical and genetic knowledge. Other species (Fig. 4) Morphological classifications As shown in Table 1 and figure 4, in addition to these, Classification by leaf structure. Galet (1979) tried to many species and varieties are spread in various districts classify genus Vitis through ampelographic measurements Fig. 3 - Geographic distribution of Vitis ficifolia Bunge var. lobata (Re- Fig. 4 - Geographic distribution of wild grapes native to Japan (Nak- gel) Nakai (Nakagawa et al., 1986). agawa et al., 1986). 216 of the leaf (Fig. 5, Table 2). Nakagawa et al. (1991) coded Cordiform: 357 to 468, Cuneiform: 135 to 247, Truncate: the characteristics of grape leaves and the result is present- 045 to 247, Orbicular: 015 to 136, Reniform: 014 to 136. ed in Table 3. Code numbers of vein length rations (ABC) According to this method, code numbers are relatively for the five basic leaf shapes are as follows (Galet, 1979): near for close species (e.g. V. coignetiae and V. amurensis) (Table 3). Classification by pollen ultrastructure. Mochioka et al. (1993) observed ultrastructures of mature pollen grains of wild grapes native to Japan, Korea and China using a scanning electron microscope and reported that the pollen could be classified as one of three types by the lumina forms in muri (Fig. 6). They also reported the Table 3 - The code number of various wild grapes obtained by using the Galet’s method (Nakagawa et al., 1991) Species ABC-r-S1S2 Vitis coignetiae 146-4-24 Vitis amurensis 146-3-24 Vitis
Recommended publications
  • The Role of the Brown Bear Ursus Arctos As Seed Disperser: a Case Study with the Bilberry Vaccinium Myrtillus
    The role of the brown bear Ursus arctos as seed disperser: a case study with the bilberry Vaccinium myrtillus Rola niedźwiedzia brunatnego Ursus arctos w rozprzestrzenianiu nasion: studium przypadku na przykładzie borówki czarnej Vaccinium myrtillus PhD thesis Alberto García-Rodríguez Kraków, 2021 To the memory of José Ignacio and Javier Rodríguez Val Female brown bear with two cubs of the year feeding on bilberry fruits in Tatra National Park (July 2020) “They thought they were burying you, they did not know they were burying a seed” Ernesto Cardenal, Nicaraguan priest, poet and politician PhD CANDIDATE mgr. ALBERTO GARCÍA-RODRÍGUEZ Institute of Nature Conservation of the Polish Academy of Sciences Al. Adama Mickiewicza 33, 31-120, Krakow, Poland SUPERVISOR dr. hab. NURIA SELVA FERNÁNDEZ Institute of Nature Conservation of the Polish Academy of Sciences Al. Adama Mickiewicza 33, 31-120, Krakow, Poland CO-SUPERVISOR dr. JÖRG ALBRECHT Senckenberg Biodiversity and Climate Research Centre (SBiK-F) Senckenberganlage 25, 60325, Frankfurt am Main, Germany. The PhD thesis was prepared during doctoral studies in the Doctoral Study of Natural Sciences of the Polish Academy of Sciences in Kraków. CONTENTS SUMMARY…………..……………..…………………………...………………………………………………...5 STRESZCZENIE……...………….……………………………………………………………………………….8 INTRODUCTION……………………...………………………………………………….……………………...11 PAPER I The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser………………..…30 PAPER II The bear-berry connection: ecological and management implications of
    [Show full text]
  • Osher Lifelong Learning Institute
    USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions)
    [Show full text]
  • Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • Downloaded from the Genbank with the Bioproject Accession Number PRJNA298058 and the Sequencing Depths Ranged from 4× to 7.4× Coverage (Average 5.6× Coverage)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432805; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Running title: Deep genome skimming Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae Bin-Bin Liua,b,c, Zhi-Yao Mac, Chen Rend,e, Richard G.J. Hodelc, Miao Sunf, Xiu-Qun Liug, Guang- Ning Liuh, De-Yuan Honga, Elizabeth A. Zimmerc, Jun Wenc* a State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China b State Key Laboratory of Vegetation and Environmental Change (LVEC), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China c Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA d Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China e Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China f Department of Biology - Ecoinformatics and Biodiversity, Aarhus University, 8000 Aarhus C, Denmark g Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China h College of Architecture and Urban Planning, Tongji University, Shanghai, China * Corresponding author.
    [Show full text]
  • Vitis Coignetiae Pulliat and Vitis Ficifolia Bunge Var
    Agricultural Sciences, 2017, 8, *-* http://www.scirp.org/journal/as ISSN Online: 2156-8561 ISSN Print: 2156-8553 Flavonoid Profiles of Wild Grapes Native to Japan: Vitis coignetiae Pulliat and Vitis ficifolia Bunge var. ganebu Hatusima Shuji Shiozaki, Kazunori Murakami Osaka Prefecture University, Graduate School of Life & Environmental Sciences, Sakai, Japan Email: [email protected] How to cite this paper: Author 1, Author Abstract 2 and Author 3 (2017) Paper Title. Agri- cultural Sciences, 8, *-*. Flavonoids are a group of natural compounds in plants with versatile health https://doi.org/10.4236/***.2017.***** benefits for humans. Grapes are a dietary source of flavonoids and the flavo- noid components in grape berries can depend on the grape species and culti- Received: **** **, *** Accepted: **** **, *** var. In this experiment, proanthocyanidins, flavonols, and anthocyanins were Published: **** **, *** analyzed in Vitis coignetiae and V. ficifolia var. ganebu, wild grapes native to Japan, and compared with those in V. labruscana cv. Muscat Bailey A, to eva- Copyright © 2017 by authors and luate the potential of the wild grapes as a grape resource. Proanthocyanidin Scientific Research Publishing Inc. This work is licensed under the Creative contents in seeds were lower in the two wild grapes than in Muscat Bailey A. Commons Attribution International However, the skin of V. ficifolia var. ganebu was the richest source of proan- License (CC BY 4.0). thocyanidins. Flavonol levels in the skins of the two wild grapes were lower http://creativecommons.org/licenses/by/4.0/ than that in the skin of Muscat Bailey A. Colorimetry determined that the to- Open Access tal anthocyanin content in the skin of V.
    [Show full text]
  • The College Gardens the Dates Following Entries Are Those of Previous Catalogues in Which the Plant Has Appeared
    The College Gardens The dates following entries are those of previous catalogues in which the plant has appeared. This catalogue of the trees and shurbs is both incomplete and out of date, but what is included is substantially correct. The last catalogue was prepared by Dr John Prest in 1980. Current text entries and images have been taken from many sources on the internet. Staircase 1 Staircase 2 Staircase 3-4 Staircase 5-6 Library wall Old Common Room Chapel wall Large library quad walls by college office Master's lodgings Staircase 10-11 Staircase 12-13 Staircase 13-14 Beds outside staircase 14-15 Staircase 14-15 Staircase 16-17 Staircase 17-18 Staircase 19-20 In grid in back gate quad Back gate quad by kitchen entrance Left of hall steps Right of hall steps Buttery and SCR Trinity wall and buildings Master's garden, north side Master's garden, east side Master's garden, south side Master's garden, in lawn Fellows' garden Fellows' garden, gate Fellows' garden, gate Fellows' garden, in lawn Outside Fellows' garden, in lawn Fellows garden, outside wall Fellows' garden, gate Trees in main lawn Trees in croquet lawn Trees in bulb lawn Trees in triangular lawn Staircase 1 Pyracantha Coccinea Evergreen to semi-evergreen shrub, 6-18 ft (1.8-5.5 m), many cultivars, variable habit. Leaves alternate, simple, narrow-elliptic or lanceolate, 2.5-6.5 cm long, crenulate-serrulate, apex acute or rarely obtuse (often a sturdy point), lustrous dark green above. Flowers perfect, white, 8 mm across, in 5-7.5 cm long clusters (corymbs) in spring or early summer.
    [Show full text]
  • Festschrift Für PETER HANELT –
    Schriften zu Genetischen Ressourcen Schriftenreihe des Informationszentrums für Genetische Ressourcen (IGR) Zentralstelle für Agrardokumentation und -information (ZADI) Band 4 Evolution und Taxonomie von pflanzen- genetischen Ressourcen – Festschrift für PETER HANELT – Tagungsband eines Internationalen Festkolloquiums anläßlich des 65. Geburtstages von Dr. Peter Hanelt am 5. und 6. Dezember 1995 in Gatersleben im Institut für Pflanzengenetik und Kulturpflanzenforschung Herausgeber dieses Bandes R. Fritsch und K. Hammer Herausgeber: Informationszentrum für Genetische Ressourcen (IGR) Zentralstelle für Agrardokumentation und -information (ZADI) Villichgasse 17, D – 53177 Bonn Postfach 20 14 15, D – 53144 Bonn Tel.: (0228) 95 48 - 210 Fax: (0228) 95 48 - 149 Email: [email protected] Schriftleitung: Dr. Frank Begemann Layout: Gabriele Blümlein Birgit Knobloch Druck: Druckerei Schwarzbold Inh. Martin Roesberg Geltorfstr. 52 53347 Alfter-Witterschlick Schutzgebühr 15,- DM ISSN 0948-8332 © ZADI Bonn, 1996 Inhalts- und Vortragsverzeichnis 1 Inhaltsverzeichnis .........................................................................................................i Abkürzungsverzeichnis............................................................................................... iii Eröffnung des Kolloquiums und Würdigung von Dr. habil. PETER HANELT zu seinem 65. Geburtstag ..........................................................................................1 Opening of the Colloquium and laudation to Dr. habil. PETER HANELT on the occasion of
    [Show full text]
  • Vascular Plant Diversity of the Gogunsan Archipelago in the Korean Peninsula
    Journal136 of Species Research 8(1):136-159, 2019JOURNAL OF SPECIES RESEARCH Vol. 8, No. 1 Vascular plant diversity of the Gogunsan Archipelago in the Korean Peninsula Jung-Hyun Kim1,*, Ji-Hong An2, Gi-Heum Nam1, Hwan-Joon Park1, Jin-Seok Kim1, Byoung Yoon Lee1, Kyeong-Ui Lee3,4 and Yeon-Soon Chang4 1Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea 2Biodiversity and Ecosystem Restoration Team, Baekdudaegan National Arboretum, Bonghwa 35208, Republic of Korea 3Department of Forest Resources, Kongju National University, Yesan 32439, Republic of Korea 4Institute of Ecosystem Survey, Seoul 06580, Republic of Korea *Correspondent: [email protected] This study was carried out to investigate the flora of six islands belonging to the Gogunsan Archipelago (i.e., Sinsi-do, Seonyu-do, Munyeo-do, Yami-do, Bian-do, and Duri-do) in the Korean Peninsula. As results of five field surveys from March to October of 2016, we have identified 575 total taxa, representing 527 species, five subspecies, 42 varieties, and one hybrid, placed in 358 genera and 118 families. Of these 575 taxa, four are endemic to Korea, six taxa are listed on the Korean Red List of threatened species, 67 are floristic regional indicator plants, and 74 are invasive alien species. In this study, we compared species richness among the islands, and find that the larger the islands, the higher the species richness. In the case of habitat affinity types, forest species were most common, followed by farmland, seacoast, bare ground and wetland species. From similarity analyses based on the composition of vascular plants, each island did not exhibit either local spec- ificity or unique diversity.
    [Show full text]
  • Food Habits of Brown Bears in Hokkaido, Japan
    FOOD HABITSOF BROWNBEARS IN HOKKAIDO,JAPAN SATOSHI OHDACHI,Institute of Applied Zoology, Hokkaido University, Sapporo, 060 Japan TOSHIKIAOI, Teshio Experiment Forest of Hokkaido University, Horonobe, 098-29 Japan Abstract: Food habits of the brown bear (Ursus arctos yesoensis) were studied from 1975 to 1984 in 4 diverse areas on Hokkaido Island. Foods of bears varied seasonally in each area and differed among areas largely because of differences in foods available. Bears ate mainly succulent herbs in spring and summer and fruits in the fall in northern Hokkaido. Hog's-fennel (Peucedanum multivittatum) dominated the bears' diet in August and September in the alpine areas of the Daisetsu Mountains. Foods of bears on the Shiretoko Peninsula included those from the sea, but were otherwise similar to northern Hokkaido. The diet of bears on the Oshimo Peninsula was dominated by beech (Fagus crenata) buds in the spring in terms of frequency of occurrence, and actinidia (Actinidia arguta) fruit in the fall. Int. Conf. Bear Res. and Manage. 7:215-220 Brown bears occur only in Hokkaido in Japan. The Mountains, Shiretoko Peninsula, and Oshima Pe- population status is largely unknown, though we be- ninsula (Fig. 1). Black bears (Selenarctos thibetanus) lieve they are generally declining as a result of habitat are not present of Hokkaido. loss and overharvest. The Northern Hokkaido study area included most In 1975, a brown bear ecology project was initiated of Northern Hokkaido, but most searches were con- to gather information necessary to properly manage ducted on the 220-km2Teshio Exp. For. of Hokkaido the species and its habitat (Aoi 1985a, 1985b).
    [Show full text]
  • Popillia Japonica
    EPPO Datasheet: Popillia japonica Last updated: 2020-11-25 IDENTITY Preferred name: Popillia japonica Authority: Newman Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Scarabaeidae Common names: Japanese beetle view more common names online... EPPO Categorization: A2 list view more categorizations online... EU Categorization: A2 Quarantine pest (Annex II B) EPPO Code: POPIJA more photos... Notes on taxonomy and nomenclature Popillia japonica is a member of the order Coleoptera, family Scarabaeidae, subfamily Rutelinae and tribe Anomlini. HOSTS Popillia japonica is a highly polyphagous species and the adults can be found feeding on a wide range of trees, shrubs, wild plants and crops (EPPO, 2016). The odour and the location in direct sun play a pivotal role in the selection of host plants by the beetle. The host range of P. japonica includes more than 300 different ornamental and agricultural plant hosts. Adults have been recorded feeding on the foliage, flowers, and fruits, larvae on grass roots (USDA, 2020). In its native area (Japan), the host range appears to be smaller than in North America. In the EPPO region, the adults of P. japonica feed on vines, fruit trees, forest plants, crops, vegetables, ornamental plants and wild species. In 2006, EPPO stated that Vitis spp. and Zea mays are the main hosts of concern in Europe (EFSA, 2019). In Italy, adults were recently found ready to emerge from the soil of rice paddies, but no damage has been recorded. Host list: Acer palmatum, Acer platanoides, Actinidia, Aesculus
    [Show full text]
  • 'Kadainou R-1' (Vitis Ficifolia Var. Ganebu
    J. Japan. Soc. Hort. Sci. 78 (2): 169–174. 2009. Available online at www.jstage.jst.go.jp/browse/jjshs1 JSHS © 2009 Influence of Temperature on Berry Composition of Interspecific Hybrid Wine Grape ‘Kadainou R-1’ (Vitis ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’) Puspa Raj Poudel1,2, Ryosuke Mochioka1*, Kenji Beppu3 and Ikuo Kataoka3 1University Farm, Faculty of Agriculture, Kagawa University, Sanuki 769-2304, Japan 2United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan 3Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan High temperature affects berry composition, especially titratable acidity, total soluble solids, and anthocyanin content. Vitis ficifolia var. ganebu, a wild grape of sub-tropical origin with a low chilling trait, develops good coloration in its natural habitat, where daytime and nighttime temperatures are high during the berry ripening stage, while V. vinifera ‘Muscat of Alexandria’, a table grape, has large berries and high sugar content, hence, it was hypothesized that hybridizing V. ficifolia var. genebu with V. vinifera would improve the sugar content and reduce titratable acidity compared to V. ficifolia var. ganebu and retain berry color even under high temperature conditions. The aim of this study was to investigate the influence of temperature on the berry composition of ‘Kadainou R-1’, an interspecific hybrid wine grape derived from V. ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’. Potted ‘Kadainou R-1’ vines with their ownroots were subjected to continuous temperatures of 20, 25, and 30°C in a phytotron during the berry-softening stage. Berries were harvested 15, 30, and 37 days after the vines were placed in the phytotron.
    [Show full text]