1 the Developing Brain: Experience and Development Embryogenesis

Total Page:16

File Type:pdf, Size:1020Kb

1 the Developing Brain: Experience and Development Embryogenesis The Developing Brain: Experience and Development Charles A. Nelson Institute of Child Development Department of Pediatrics University of Minnesota Human Brain Development Embryogenesis • Following conception, zygote rapidly divides, forming ball of cells (blastocyst) • About 1 week post conception, blastocyst divides into inner and outer layer • Outer layer becomes cord, sac, placenta; inner becomes embryo 1 Embryo, Umbilical Cord, Amniotic Sac Embryogeneis, Con’t Placenta • Between 1st and 2nd week post conception, embryo divides into 3 layers embryo • Inner (endoderm) becomes organs, etc. • Middle (mesoderm) becomes muscle/skeletal Amniotic sac system • Outer (ectoderm) becomes outer coverings PLUS nervous system Umbilical cord Neurulation Neural Tube Formation • Days 18-24: – dorsal region of ectodermal layer of embryo thickens and forms neural plate – plate forms a groove, followed by formation of neural tube – tube closes at rostral and caudal ends – cells trapped inside tube form CNS; those outside tube form ANS. 2 Errors in Neurulation Spina Bifida • Neural Tube Defects, including – Spina bifida (“open spine”) – Anencephaly (lack of cortex) – (next slides are graphic) 3 Anencephaly Neurogenesis (note: there are multiple anomalies here in addition to anencephaly) • Precursors to neurons and supportive tissue (glia) form; this continues postnatally. • Regarding neurogenesis of neurons, previously believed was complete at birth. Now know there is postnatal neurogenesis through at least middle age in dentate gyrus (region of hippocampus), and possibly in other areas. Neurogenesis, Con’t Cell Migration • Postnatal neurogenesis influenced by experience (positive = ↑new neurons and negative = ↓ new • Following neural tube closure, there is proliferation of neurons). a single layer of epithelial cells that line the tube. • Recent report (Gould et al., Sept., 2001) suggests • Cells are connected to each other and in some these new cells are short-lived (substantial decline by cases, to radial glial fibers. 9 weeks). • Expansion occurs between layers, and neuroblasts climb onto fibers and migrate in radial direction. Nevertheless… • Cortex forms in inside-out pattern, with earliest of 6 • Believe new cells involved in learning and memory layers formed first, followed by each subsequent layer. 4 Cell Migration in Ferret Brain Errors in Cell Migration (Courtesy of Susan McConnell, Ph.D.) • Schizophrenia (?) • Agenesis of the corpus callosum Migrating • Prematurity may be example of incomplete Neuron cell migration, depending on degree 5 The Preterm Brain Differentiation and Synaptogenesis (approximately 25 weeks gestation) Temporal • Once cells reach target destination, following Lobe events may occur: Frontal Lobe – cell body develops or – cell dies • If cell body develops: – processes (axons, dendrites) form – synapses form Note lack of gyri and sulci 6 Synaptogenesis • massive overproduction of synapses • Newborn brain has many more synapses than adult brain. • Overproduction followed by retraction to adult numbers of synapses. • In human, rate of retraction varies from brain area to brain area. Overproduction of Synapses Retraction of Synapses: • In visual cortex, is burst of synapses 3 – 4 postnatal months, with peak occurring 4 months. • In visual and auditory cortices, adult levels of • Primary auditory cortex (Heschl’s gyrus) follows synapses obtained in early childhood (2-6 similar timetable. years). • In area involved in receptive language (angular gyrus) and in area involved in language production (Broca’s area) there are slightly fewer synapses at 3 • In middle frontal gyrus, adult levels are not – 4 months than in primary auditory cortex reached until mid- to late adolescence. (i.e.,these areas lag slightly behind basic auditory areas). • In middle frontal gyrus maximum density not reached until 12 months. 7 Summary of Synaptogenesis • Synapse overproduction occurs early in life, whereas synapses elimination occurs much later, and varies greatly by area (e.g., 6 years for visual cortex, 15+ years for prefrontal cortex). Why Overproduce Synapses? Myelination • captures experience, thereby • Myelin is lipid/protein substance pruning/cultivating synapses • In CNS, myelin produced by oligodendroglia • can be adaptive for the organism (period of • In ANS, myelin produced by Schwann cells opportunity) but • Myelin wraps itself around axon as form of • can also be maladaptive (period of insulation vulnerability), depending on nature of • Myelin speeds conduction velocity experience • “Plasticity cuts both ways” (J. McVicker Hunt) 8 Myelination During Prenatal and Myelination, Con’t Early Postnatal Period • Myelination has implications for both serial • System: and parallel processing (e.g., multitasking). – motor roots followed by • Myelination occurs in “waves” beginning – sensory roots, followed by – somesthetic (touch) cortex, prenatally and ending in young adulthood – primary visual (seeing) and then (and in some regions, as “late” as middle – primary auditory (hearing) cortex. age). • First postnatal year: • Historically stained for myelin in postmortem – regions of brain stem, tissue; now use structural Magnetic – cerebellum and Resonance Imaging (MRI) and Diffusion – splenium of corpus callosum all begin Tensor Imaging (DTI). • By 1 year all regions of corpus callosum underway Myelination During Childhood to Adolescent Period Developmental Event Timeline Overview of Developmental Event Neuralation 18-24 prenatal days Cells differentiate into one of three layers: endoderm, mesoderm and ectoderm, which • Through pre-adolescent period, observe then form the various organs in the body. The neural tube (from which the CNS is derived) develops from the ectoderm cells; the neural crest (from which the ANS is derived) lies between the ectodermal wall and increase in gray matter volume (more the neural tube. Neuronal Migration 6-24 prenatal weeks Neurons migrate at the ventricular zone along radial glial cells to the cerebral cortex. dendtritic spines?) and decrease in white; this The Neurons migrate in an inside-out manner, with later generations of cells migrating through previously developed cells. reverses in adolescence, with decrease in The cortex develops into 6 layers Synaptogenesis 3rd trimester - Neurons migrate into the cortical plate and extend apical and basilar dendrites. adolescence Chemical signals guide the developing dendrites toward their final location, where gray and increase in white (retraction of synapses are formed with projections from subcortical structures. These connections are strengthened through neuronal activity, and connections with very synapses, increase in connectivity?). little activity are pruned. Postnatal Neurogenesis Birth - Adulthood The development of new cells in several brain regions, including: - dentate gyrus of the hippocampus – Changes of note: parietal, temporal, and - olfactory bulb - possibly cingulate gyrus; regions of parietal cortex occipital lobes show relatively little change, Myelination 3rd trimester – middle Neurons are enclosed in a myelin sheath, resulting in an increased speed of action whereas frontal lobe show large changes. age potentials. Gyrification 3rd trimester – adulthood The smooth tissue of the brain folds to form gyri and sulci. Structural Development of the Birth – late adulthood The prefrontal cortex is the last structure to undergo gyrification during uterine life. Prefrontal Cortex The synaptic density reaches its peak at 12 months, however, myelination of this structure continues into adulthood Neurochemical Development Uterine life - All major neurotransmitter systems undergo initial development during uterine life and are of the Prefrontal Cortex adolescence present at birth. Although it is not well studied in humans, it is thought that most neurotransmitter systems do not reach full maturity until adulthood. 9 Neural Plasticity: Two Types of Plasticity Some General Principles and Terms (from William Greenough ) Experience-expectant • Development based the expectation that appropriate • Recovery of Function: cortical function environments will provide information needed to returned following injury (e.g., return of select appropriate subsets of synaptic connections. language following stroke) Common to all members of the species (examples: visual development; language; initial formation of • Sparing: lack of loss in performance following attachment) brain damage (e.g., no impairment in Experience-dependent language despite a perinatal stroke that • Unique to each individual, it most likely involves destroys left frontal cortex). active formation of new synaptic connections throughout the life span based on each person’s • Neuronal Plasticity: hypothesized to underlie interaction with his/her environment (example: recovery of function. learning; quality of attachment?). Examples of Developmental Plasticity Examples of Developmental Plasticity, Con't • The development of normal vision depends • Prenatal exposure to teratogens alters brain on access to normal visual input during a development sensitive period of development. • Prenatal exposure to stress can cause longlasting neurobehavioral deficits in rats and monkeys • Similarly, correcting certain visual impairments (e.g., strabismus) must occur during this sensitive period. • Development of speech perception depends on exposure to normal speech sounds during a sensitive period of development. 10 Conclusions about Examples of Developmental Plasticity, Con't Developmental Plasticity • Memory
Recommended publications
  • Neuroscience in Brief
    Neuroscience in Brief On the Move from Academia to Industry: Established Neuroscientists Who Have Made the Transition from Academia to Industry Are Finding Different Rewards in a New Environment Contributed by Laura Bonetta In 1997, neuroscientist Frank Walsh was Wyeth Research in Pennsylvania, as exec- asked by Peter Goodfellow whether he utive vice president for discovery research would be interested in leading the neuro- worldwide. At Wyeth, a company that has science division at SmithKline Beecham several blockbuster drugs in the market, in- Pharmaceuticals (now GlaxoSmithKline) in cluding the antidepressant Effexor XR (ven- Harlow, UK. Goodfellow, a well known ge- lafaxine), drug discovery depended mostly neticist, had joined the company from the University of Cambridge a few years earlier. on a large chemistry effort and on broad in- Although Walsh, then research dean at teractions with colleagues. “As a biologist, it Guy’s Hospital in London, and head of a is typically difficult to gain access to chemis- well-funded research lab, was not looking to try. It is very pleasing to have chemists to move, he started thinking about the oppor- work with on projects,” says Walsh. tunities created by working in an industrial environment. “I was working in a large Looking for change medical school on diseases. But I had a lim- Unlike Walsh, when Richard Scheller left ited ability to impact on human health. That academia, he was actively seeking a is just the nature of how an academic insti- change. He had been a professor at Stan- tution is set up,” he says. In addition, Smith- ford University School of Medicine in Kline was “a very academically oriented “One of the main differences is the availability of resources company.
    [Show full text]
  • LHX2 Interacts with the Nurd Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11
    194 • The Journal of Neuroscience, January 4, 2017 • 37(1):194–203 Development/Plasticity/Repair LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11 X Bhavana Muralidharan,1 Zeba Khatri,1 Upasana Maheshwari,1 Ritika Gupta,1 Basabdatta Roy,1 Saurabh J. Pradhan,2,3 Krishanpal Karmodiya,2 XHari Padmanabhan,1,4,5 XAshwin S. Shetty,1,4 Chinthapalli Balaji,1 X Ullas Kolthur-Seetharam,1 XJeffrey D. Macklis,4,5 Sanjeev Galande,2 and XShubha Tole1 1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India, 2Indian Institute of Science, Education, and Research, Pune 411008, India, 3Symbiosis School of Biomedical Sciences, Symbiosis International University, Lavale, Pune, 4Department of Stem Cell and Regenerative Biology and 5Center for Brain Science, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138 In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to dif- ferentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons.
    [Show full text]
  • PUBH 8901 Doctoral Professional Development Seminar School of Public Health the University of Memphis Fall 2019
    PUBH 8901, Fall 2019, version:08.22.19 PUBH 8901 Doctoral Professional Development Seminar School of Public Health The University of Memphis Fall 2019 Mondays, 5:30-8:30pm 235 Robison Hall Instructor Ken Ward Office: 201 Robison Hall Phone: 678.1702 E-mail: [email protected] Office hours: by appointment Course Description This is a seminar for all School of Public Health doctoral students that is required during the first or second year of training. It will address a variety of professional issues that are vital to success as a doctoral student and public health professional. A major portion of the course is dedicated to responsible conduct in research. Other topics include public health history, philosophy, and ethics; manuscript and grant writing; reviewing others’ scientific work; delivering poster and oral presentations; developing positive mentor/mentee relationships, and time management. Course Prerequisite Enrollment as a first or second year doctoral student in the School of Public Health Learning Objectives 1. Discuss and critically evaluate scholarly or popular treatments of major developments in the history or philosophy of public health 2. Apply ethics frameworks to public health decision making 3. Understand, evaluate, and apply accepted standards of responsible conduct in scientific research 4. Prepare and deliver effective poster and oral presentations 5. Understand effective strategies for identifying grant funding opportunities and writing successful research grants 6. Critically evaluate the quality of scientific manuscripts submitted for publication 7. Improve scientific writing skills 8. Recognize and discuss diverse issues important to educational and professional success 9. Understand the roles and responsibilities of mentors and mentees 10.
    [Show full text]
  • Alumni Director Cover Page.Pub
    Harvard University Program in Neuroscience History of Enrollment in The Program in Neuroscience July 2018 Updated each July Nicholas Spitzer, M.D./Ph.D. B.A., Harvard College Entered 1966 * Defended May 14, 1969 Advisor: David Poer A Physiological and Histological Invesgaon of the Intercellular Transfer of Small Molecules _____________ Professor of Neurobiology University of California at San Diego Eric Frank, Ph.D. B.A., Reed College Entered 1967 * Defended January 17, 1972 Advisor: Edwin J. Furshpan The Control of Facilitaon at the Neuromuscular Juncon of the Lobster _______________ Professor Emeritus of Physiology Tus University School of Medicine Albert Hudspeth, M.D./Ph.D. B.A., Harvard College Entered 1967 * Defended April 30, 1973 Advisor: David Poer Intercellular Juncons in Epithelia _______________ Professor of Neuroscience The Rockefeller University David Van Essen, Ph.D. B.S., California Instute of Technology Entered 1967 * Defended October 22, 1971 Advisor: John Nicholls Effects of an Electronic Pump on Signaling by Leech Sensory Neurons ______________ Professor of Anatomy and Neurobiology Washington University David Van Essen, Eric Frank, and Albert Hudspeth At the 50th Anniversary celebraon for the creaon of the Harvard Department of Neurobiology October 7, 2016 Richard Mains, Ph.D. Sc.B., M.S., Brown University Entered 1968 * Defended April 24, 1973 Advisor: David Poer Tissue Culture of Dissociated Primary Rat Sympathec Neurons: Studies of Growth, Neurotransmier Metabolism, and Maturaon _______________ Professor of Neuroscience University of Conneccut Health Center Peter MacLeish, Ph.D. B.E.Sc., University of Western Ontario Entered 1969 * Defended December 29, 1976 Advisor: David Poer Synapse Formaon in Cultures of Dissociated Rat Sympathec Neurons Grown on Dissociated Rat Heart Cells _______________ Professor and Director of the Neuroscience Instute Morehouse School of Medicine Peter Sargent, Ph.D.
    [Show full text]
  • Fezf2 Expression Identifies a Multipotent Progenitor For
    Neuron Report Fezf2 Expression Identifies a Multipotent Progenitor for Neocortical Projection Neurons, Astrocytes, and Oligodendrocytes Chao Guo,1,3 Matthew J. Eckler,1,3 William L. McKenna,1 Gabriel L. McKinsey,2 John L.R. Rubenstein,2 and Bin Chen1,* 1Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA 2Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, CA 94158, USA 3These authors contributed equally to this work *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2013.09.037 SUMMARY 1988), and in vitro culture of single RGCs (Shen et al., 2006) suggests that cortical projection neuron subtype is sequen- Progenitor cells in the cerebral cortex sequentially tially determined by birthdate through progressive lineage re- generate distinct classes of projection neurons. striction of a common RGC (Leone et al., 2008). However, Recent work suggests the cortex may contain the identification of early Cux2-expressing (Cux2+) RGCs, intrinsically fate-restricted progenitors marked by which were reported to be intrinsically specified to generate expression of Cux2. However, the heterogeneity late-born, upper-layer neurons (Franco et al., 2012), calls of the neocortical ventricular zone as well as the into question this decades-old model and raises the possibility that deep-layer projection neurons are similarly generated contribution of lineage-restricted progenitors to the from
    [Show full text]
  • Cux2-Positive Radial Glial Cells Generate Diverse Subtypes of Neocortical Projection Neurons and Macroglia
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2016 Cux2-Positive Radial Glial Cells Generate Diverse Subtypes of Neocortical Projection Neurons and Macroglia Ton Dan Nguyen San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Nguyen, Ton Dan, "Cux2-Positive Radial Glial Cells Generate Diverse Subtypes of Neocortical Projection Neurons and Macroglia" (2016). Master's Theses. 4732. DOI: https://doi.org/10.31979/etd.v8xn-b84g https://scholarworks.sjsu.edu/etd_theses/4732 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CUX2-POSITIVE RADIAL GLIAL CELLS GENERATE DIVERSE SUBTYPES OF NEOCORTICAL PROJECTION NEURONS AND MACROGLIA A Thesis Presented to The Faculty of Department of Biological Studies San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Ton Dan Nguyen August 2016 © 2016 Ton Dan Nguyen ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled CUX2-POSITIVE RADIAL GLIAL CELLS GENERATE DIVERSE SUBTYPES OF NEOCORTICAL PROJECTION NEURONS AND MACROGLIA By Ton Dan Nguyen APPROVED FOR THE DEPARTMENT OF BIOLOGICAL SCIENCES SAN JOSÉ STATE UNIVERSITY August 2016 Dr. Tzvia Abramson, Committee Chair Department of Biological Sciences, SJSU Dr. Katherine Wilkinson Department of Biological Sciences, SJSU Dr. Bin Chen Department of MCD Biology, UCSC ABSTRACT The mammalian neocortex is 6-layered structure that develops in an “inside-out” manner, with cells of the deep layers (Layers 5-6) born first.
    [Show full text]
  • Differential Expression of Synaptic Vesicle Protein 2 (SV2) Lsoforms
    The Journal of Neuroscience, September 1994, M(9): 5223-5235 Differential Expression of Synaptic Vesicle Protein 2 (SV2) lsoforms Sandra M. Bajjalieh,’ Gretchen D. Fran&* James M. Weimann,* Susan K. McConnell,* and Richard H. Schellerl ‘Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, and *Department of Biological Sciences, Stanford University, Stanford, California 94305 The synaptic vesicle proteins SVSA and SV2B (SV2 = syn- organ of the electric fish Discopygeommata. Early biochemical aptic vesicle protein 2) are two highly related proteins be- characterization revealed that the SV2 antigen is part of a syn- longing to a family of transporters. As a first step toward aptic vesicle membrane glycoprotein present in all neural and identifying the function of the SV2 proteins, we examined endocrine cells surveyed (Buckley and Kelly, 1985). cDNAs the expression of SVSA and SVSB in the rat brain by in situ encodingtwo proteins recognized by the anti-SV2 antibody have hybridization, immunohistochemistry, and immunoprecipi- been isolated from rat (Bajjalieh et al., 1992, 1993; Feany et al., tation with isoform-specific antibodies. These analyses re- 1992). The amino acid sequencesof the SV2 proteins are 65% vealed that one isoform, SVPA, is expressed ubiquitously identical and -80% similar (Fig. 1). These proteins, denoted throughout the brain at varying levels. The other isoform, SV2A and SV2B, demonstrate significant homology to a large SVSB, has a more limited distribution with varying degrees family of transporter proteins (Henderson and Maiden, 1990; of coexpression with SVPA. lmmunoprecipitation of brain Henderson, 1993). The homology to transporters suggeststhat synaptic vesicles with isoform-specific antibodies followed the SV2 proteins are synaptic vesicle-specific transporters.
    [Show full text]
  • Second Calling
    HHMI Bulletin / Winter 2015 5 To see more of McConnell’s photos, go to www.hhmi.org/bulletin/winter-2015. “animal-obsessed kid,” she says, the kind who kept hamsters and rabbits and parakeets, who spent days watching a colony of wood rats beside her family’s Pennsylvania home. She idolized Jane Goodall and dreamed of someday following the great primatologist’s footsteps into an African jungle. Second As an undergraduate in Yet she doesn’t consider biology in the late 1970s, however, taking pictures to be an escape from Calling McConnell found behavioral the laboratory. Rather, she says, it happened nearly a studies unsatisfying. Sure, she conservation photography and decade ago, but Susan McConnell could describe a monkey yawning neurobiology are two trunks that remembers the moment with or courting a mate—but what was family staring down a marabou have grown from the same root. telephoto clarity: she was standing happening in its brain to produce stork or about elephants rescuing Both can be traced back to on the deck of a ship in the the behavior? a baby stuck in an abandoned the experiences of that animal- Svalbard archipelago, halfway So began a neurobiology water trough, as well as about the loving girl, and McConnell, who between mainland Norway and the career devoted to understanding larger themes of conservation. this year received funding as North Pole, watching a polar bear the dynamics of neurons in the On a planet where so many an HHMI professor to help life leap from one ice foe to another. cerebral cortex.
    [Show full text]
  • NIH Public Access Author Manuscript Ann N Y Acad Sci
    NIH Public Access Author Manuscript Ann N Y Acad Sci. Author manuscript; available in PMC 2010 July 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Ann N Y Acad Sci. 2009 July ; 1170: 21±27. doi:10.1111/j.1749-6632.2009.04372.x. The role of Foxg1 in the development of neural stem cells of the olfactory epithelium Shimako Kawauchi1, Rosaysela Santos1, Joon Kim1,2, Piper L.W. Hollenbeck1, Richard C. Murray3, and Anne L. Calof1,* 1Department of Anatomy & Neurobiology and the Center for Complex Biological Systems, University of California, Irvine, CA 92697-1275 USA 3 Biology Department, Hendrix College, Conway, AR 72032, USA Abstract The olfactory epithelium (OE) of the mouse is an excellent model system for studying principles of neural stem cell biology because of its well-defined neuronal lineage and its ability to regenerate throughout life. To approach the molecular mechanisms of stem cell regulation in the OE, we have focused on Foxg1, also known as brain factor-1, which is a member of the Forkhead transcription factor family. Foxg1−/− mice show major defects in the OE at birth, suggesting that Foxg1 plays an important role in OE development. We find that Foxg1 is expressed in cells within the basal compartment of the OE, the location where OE stem and progenitor are known to reside. Since FoxG1 is known to regulate proliferation of neuronal progenitor cells during telencephalon development, we performed BrdU pulse-chase of Sox2-expressing neural stem cells during primary OE neurogenesis. We found the percentage of Sox2-expressing cells that retained BrdU was twice as high in Foxg1−/− OE as in wildtypes, suggesting that these cells are delayed and/or halted in their development in the absence of Foxg1.
    [Show full text]
  • Attraction of Specific Thalamic Input by Cerebral Grafts Depends on the Molecular Identity of the Implant M
    Proc. Natd. Acad. Sci. USA Vol. 89, pp. 3706-3710, May 1992 Neurobiology Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant M. F. BARBE*tt AND P. LEVITTt *Department of Physical Therapy, Temple University, Philadelphia, PA 19140; and tDepartment of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, PA 19129 Communicated by Pasko Rakic, January 27, 1992 ABSTRACT The cerebral cortex ofmammals differentiates cortical regions migrate from the proliferative zone along the into functionally distinct areas that exhibit unique cytoarchitec- lateral ventricle to limbic regions (9-12). We found that the ture, connectivity, and molecular characteristics. Molecular host milieu can regulate the molecular fate of cortical stem specification ofcells fated for limbic cortical areas, based on the cells, so that E12 cells placed into host perirhinal cortex expression of the limbic system-associated membrane protein express LAMP regardless oftheir cortical origin in the donor (LAMP), occurs during an early period of brain development. (13). Although these studies demonstrate an early commit- The correlation between this early molecular commitment and ment of neurons to the limbic phenotype, they have not formation of specific thalamocortical connections was tested by addressed whether the molecular specification of cortical using a transplantation paradigm. We manipulated the pheno- neurons has other phenotype correlates, such as patterns of type ofdonor limbic and sensorimotor neurons by placing them connectivity. in different cortical areas of host animals. Labeling of trans- In the present study, we have used this feature of manip- planted tissue with the lipophilic dye 1,1'-dioctadecyl-3,3,3'3'- ulating molecular phenotype in transplantation studies to test tetramethylindocarbocyanine was used to assay host thamic the potential of cortical tissue to attract appropriate thalamic neurons projecting to the donor tissue.
    [Show full text]
  • Susan K. Mcconnell Susan B
    Susan K. McConnell Susan B. Ford Professor Biology CONTACT INFORMATION • Alternate Contact Yvonne Lee - Administrative Assistant Email [email protected] Tel 650-724-7731 Bio ACADEMIC APPOINTMENTS • Professor, Biology • Member, Bio-X • Member, Wu Tsai Neurosciences Institute ADMINISTRATIVE APPOINTMENTS • Co-Chair, Stanford Long-Range Planning Area Steering Group on Our Community, (2017-2017) • Co-Chair, Study on Undergraduate Education at Stanford (SUES), (2010-2012) HONORS AND AWARDS • Clare Booth Luce Professor, Henry Luce Foundation (1989-1994) • Searle Scholar, Searle Trust (1989) • Pew Scholar, Pew Charitable Trust (1989) 3 OF 13 PROFESSIONAL EDUCATION • A.B., Harvard and Radcliffe Colleges , Biology (1980) • Ph.D., Harvard University , Neurobiology (1987) LINKS • Photography Website: http://www.susankmcconnell.com Research & Scholarship CURRENT RESEARCH AND SCHOLARLY INTERESTS Susan McConnell is the Susan B. Ford Professor in the Department of Biological Sciences at Stanford University. She joined the Stanford faculty in 1989. McConnell has studied the development of the cerebral cortex, the brain region that controls our highest cognitive and perceptual functions. The nerve cells of the cortex are Page 1 of 2 Susan K. McConnell http://cap.stanford.edu/profiles/Susan_McConnell/ generated during fetal life; once these cells are born, they migrate over long distances before forming connections with other nerve cells. McConnell has explored the mechanisms by which young neurons acquire an identity and establish specific connections.
    [Show full text]
  • OCP Annual Report 2012.Indd
    OĐĐĆĕĎĆĕĎ CĔĔēĘĊėěĆęĎĔēēĘĊėěĆęĎĔē PėėĔďĊĈęĔďĊĈę AēēēĚĆđēĚĆđ RĊĕĔėęĊĕĔėę 22012012 The Mission of the Okapi Conservation Project is to conserve the Okapi in the wild while preserving the biological and cultural diversity of the Ituri Forest. The Okapi is an endemic protected species of the Democratic Republic of the Congo and is the national conservation symbol of the country. As a fl agship species, the okapi serves as an ambassador representing the incredible diversity of life found in the region. The objective of the Okapi Conservation Project (founded in 1987) is to protect the natural forest systems of the Okapi Wildlife Reserve from exploitation by supporting and equipping government wildlife rangers; providing training and infrastructure development to improve protection of wildlife and habitats; assisting and educating communities to create an understanding of sustainable resource conservation; and by promoting alternative agricultural practices and food production in support of community livelihoods. Okapi Conservation Project 2012 Summary able to sustain important community outreach programs and work The Okapi Wildlife Reserve (OWR) experienced an escalation of to rebuild damaged infrastructure in Epulu. Our education team illegal activities in 2012 driven by the increasing global demand for traveled village to village around the Reserve under extremely ivory, gold, coltan and timber. The Institute in the Congo for the dangerous conditions to bring needed assistance to schools, Conservation of Nature (ICCN), supported by OCP and partners, health clinics and farmers in an effort to ensure that our 25 year responded with a crackdown on those involved in the killing of commitment to their communities would not be undermined. Today elephants and mining of gold inside the reserve.
    [Show full text]