Species As Permanent and Temporary Turfgrasses in the Transition Zone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GENETICS, GENOMICS and BREEDING of FORAGE CROPS Genetics, Genomics and Breeding of Crop Plants
Genetics, Genomics and Breeding of Genetics, Genomics and Breeding of About the Series Genetics, Genomics and Breeding of AboutAbout the the Series Series SeriesSeries on on BasicBasic and and advanced advanced concepts, concepts, strategies, strategies, tools tools and and achievements achievements of of Series on Basicgenetics, and advanced genomics concepts, and breeding strategies, of crops tools haveand beenachievements comprehensively of Genetics,Genetics, Genomics Genomics and and Breeding Breeding of of Crop Crop Plants Plants genetics,genetics, genomics genomics and and breeding breeding of ofcrops crops have have been been comprehensively comprehensively Genetics, Genomics and Breeding of Crop Plants deliberateddeliberated in in30 30volumes volumes each each dedicated dedicated to toan an individual individual crop crop or orcrop crop Series Editor deliberatedgroup. in 30 volumes each dedicated to an individual crop or crop Series Series Editor Editor group.group. Chittaranjan Chittaranjan Kole, Kole, Vice-Chancellor, Vice-Chancellor, BC BC Agricultural Agricultural University, University, India India The series editor and one of the editors of this volume, Prof. Chittaranjan Chittaranjan Kole, Vice-Chancellor, BC Agricultural University, India TheThe series series editor editor and and one one of theof the editors editors of thisof this volume, volume, Prof. Prof. Chittaranjan Chittaranjan Kole,Kole, is globallyis globally renowned renowned for for his his pioneering pioneering contributions contributions in inteaching teaching and and Kole,research is globally for renowned nearly three for decades his pioneering on plant contributions genetics, genomics, in teaching breeding and and researchresearch for for nearly nearly three three decades decades on onplant plant genetics, genetics, genomics, genomics, breeding breeding and and biotechnology.biotechnology. -
Package 'Binomen'
Package ‘binomen’ August 29, 2016 Title 'Taxonomic' Specification and Parsing Methods Description Includes functions for working with taxonomic data, including functions for combining, separating, and filtering taxonomic groups by any rank or name. Allows standard (SE) and non-standard evaluation (NSE). Version 0.1.0 License MIT + file LICENSE URL https://github.com/ropensci/binomen BugReports https://github.com/ropensci/binomen/issues LazyLoad yes LazyData yes VignetteBuilder knitr Imports methods, stats, jsonlite, lazyeval, dplyr Suggests testthat, knitr, taxize RoxygenNote 5.0.1 NeedsCompilation no Author Scott Chamberlain [aut, cre] Maintainer Scott Chamberlain <[email protected]> Repository CRAN Date/Publication 2015-12-07 22:17:54 R topics documented: binomen-package . .2 binomial . .3 gethier . .3 grouping . .4 make_taxon . .6 make_taxon_fromclass . .7 parts . .7 1 2 binomen-package pick .............................................9 pop ............................................. 10 rank_table . 11 scatter . 11 span............................................. 12 strain . 13 taxa ............................................. 14 taxon . 14 taxonref . 15 taxonrefs . 16 taxon_classes . 16 taxon_df . 17 Index 18 binomen-package Taxonomic class specification and parsing methods Description Taxonomic class specification and parsing methods Author(s) Scott Chamberlain <[email protected]> Examples library("binomen") # operating on `taxon` objects out <- make_taxon(genus="Poa", epithet="annua", authority="L.", family='Poaceae', -
Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student. -
Grasses of the Texas Hill Country: Vegetative Key and Descriptions
Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material. -
ORIGIN, BIOGEOGRAPHICAL MIGRATIONS and DIVERSIFICATIONS of TURFGRASSES James B Beard1
Research Report | SR132 ORIGIN, BIOGEOGRAPHICAL MIGRATIONS AND DIVERSIFICATIONS OF TURFGRASSES James B Beard1 Executive Summary Whether a turfgrass species is characterized as Primitive ancestral grasses are now proposed native or naturalized to North America has been to have appeared during the Late Cretaceous based on world-wide simplistic observations between 65 and 96 mya (million years ago) in focused on where the greatest genetic diversity Gondwanan Africa. The ancestral Pooideae are occurred, termed center-of-origin. Research infor- estimated to have migrated to the steppes of mation as to dating and locations of subsequent Laurasian Eurasia during the Eocene ~ 38 to migration and diversification has been minimal 47 mya. Taxonomic divergence of the base C3 due to a lack of needed research technologies. Pooideae group appears to have been initiated in Intercontinental migration of grasses has been Europe ~ 26 to 33.5 mya. The base C4 Pooideae assumed to have been unlikely due to oceanic apparently arose in Africa ~ 30 to 33 mya, followed separation. Recent development of paleobotanical by migration to West Gondwana South America studies using ultrastructural electron microscopic and to East Gondwana India and Australia. techniques and stable carbon isotope dating instrumentation and research procedures, plus Diversification led to the emergence of an ancient molecular phylogenetic research and cladistic Poeae group known as the fine-leaf fescues biogeographic analysis of large data sets are (Festuca) in central-Europe during the mid- clarifying our understanding of migration patterns Miocene ~ 13 mya. Subsequent migration occurred and dating of multiple secondary centers-of-origin via the mountains of central and eastern Asia, for grasses. -
Species Identification the 20Th in a Series by R
UNDERSTANDING TURF MANAGEMENT Species Identification The 20th in a series by R. W. Sheard, P.Ag. he management of turf often re- margins of the leaves overlapping (Fig. Kentucky bluegrass (Poa pratensis L.) Tquires we know what species of grass 1). Canada bluegrass (Poa compressa L.) we are working with. The manager may The leaf blade may be used in identify- Rough bluegrass (Poa trivialis L.) wish to know whether his sports field is ing species on the basis of the shape of the Annual bluegrass (Poa annua L.) bluegrass, ryegrass or tall fescue. His re- leaf tip. The differentiating characteristic Supina bluegrass (Poa sup ina cords may be misplaced as to what was is whether the leaf tip is boat shaped or Schreb.) seeded originally and with time a mixture pointed apex (Fig. 2). Italian ryegrass (Lolium multiflorum of species may have become dominated The leaf sheath is that tubular part of Lam.) by one species. So what is it? the leaf, arising at the node and closely Perennial ryegrass (Lolium perenne The answer is obtained through identi- clasping the stem or younger. growing L.) fying certain vegetative plant parts; then leaves upward to where the blade begins. Tall fescue (Festuca arundinaceae according to their characteristics decide The leaf sheath may be classified as split Schreb.) what species you are working with. The from the node to emergence of the blade, Meadow fescue (Festuca elatior L.) plant parts are the root system, the leaf split at the top but tube-like near the Creeping red fescue (Festuca rubra blade, the bud-shoot, the sheath, the col- node, or closed the entire distance from L.) lar, the auricle and the ligule. -
Biological Flora of the British Isles: Poa Nemoralis
DOI: 10.1111/1365-2745.13402 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 292 Biological Flora of the British Isles: Poa nemoralis Jan Plue1 | Sara A. O. Cousins1 | Karen De Pauw2 | Martin Diekmann3 | Jenny Hagenblad4 | Kenny Helsen5 | Martin Hermy6 | Jaan Liira7 | Anna Orczewska8 | Thomas Vanneste2 | Monika Wulf9 | Pieter De Frenne2 1Biogeography and Geomatics, Department of Physical Geography, Stockholm University, Stockholm, Sweden; 2Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium; 3Vegetation Ecology and Conservation Biology, Institute of Ecology, University of Bremen, Bremen, Germany; 4Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden; 5Plant Conservation and Population Biology, Biology Department, University of Leuven, Heverlee, Belgium; 6Division of Forest, Nature & Landscape Research, University of Leuven, Heverlee, Belgium; 7Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; 8Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland and 9Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany Correspondence Jan Plue Abstract Email: [email protected] 1. This account presents information on all aspects of the biology of Poa nemoralis L. Funding information (Wood Meadow-grass) that are relevant to understanding its ecological charac- Svenska Forskningsrådet FORMAS Future teristics and behaviour. The main topics are presented within the standard frame- Research Leaders, Grant/Award Number: 2018-00961; European Research Council, work of the Biological Flora of the British Isles: distribution, habitat, communities, Grant/Award Number: FORMICA 757833 responses to biotic factors, responses to environment, structure and physiol- ogy, phenology, floral and seed characters, herbivores and disease, history, and conservation. -
Spreading Bluegrass Poa Pratensis Ssp. Irrigata (Lindm.) Lindb
Kentucky bluegrass Poa pratensis ssp. pratensis L. spreading bluegrass Poa pratensis ssp. irrigata (Lindm.) Lindb. f. rough bluegrass Poa trivialis L. Introduction Kentucky bluegrass, spreading bluegrass, and rough bluegrass are treated together here because they share similar biological and ecological attributes. Invasiveness Rank: 52 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Family: Poaceae Synonyms for Poa trivialis: Poa attica Boiss. & Heldr. Other common names: none Synonyms for Poa pratensis ssp. pratensis: Poa agassizensis Boivin & D. Löve, Poa angustifolia L., Description Poa angustiglumis Roshevitz, Poa pratensis ssp. Kentucky bluegrass and spreading bluegrass are agassizensis (Boivin & D. Löve) Taylor & MacBryde, strongly rhizomatous, mat-forming, perennial grasses Poa pratensis ssp. angustifolia (L.) Lej., Poa pratensis that grow 15 to 76 cm tall. Rough bluegrass lacks var. angustifolia (L.) Gaudin, P. pratensis var. anceps rhizomes and is tufted with decumbent bases. The culms (Gaudin) Grisebach, Poa pratensis var. domestica of rough bluegrass grow up to 91 cm tall. In all three Laestad., Poa pratensis var. gelida (Roemer & J.A. taxa, leaf blades are flat to folded and smooth with Schultes) Böcher, Poa pratensis var. iantha Wahlenb., double mid-ribs. Leaf tips are prow-shaped, as they are P. viridula Palibin. in most Poa species. Sheaths are rounded to somewhat Other common names: none keeled, partially closed, and smooth. Panicles are broadly pyramidal and compact. -
Global Relationships Between Plant Functional Traits and Environment in Grasslands
GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub. -
Erschließung Genetischer Ressourcen Der Wiesenrispe Für Die Gräserzüchtung Durch Analyse Wichtiger Merkmalsausprägungen
Aus dem Institut für Pflanzenzüchtung und Pflanzenschutz Direktor: Prof. Dr. habil. W.E. Weber der Landwirtschaftlichen Fakultät Dekan: Prof. Dr. habil. P. Pickel der Martin-Luther-Universität Halle-Wittenberg Fachgebiet: Pflanzenzüchtung Erschließung genetischer Ressourcen der Wiesenrispe für die Gräserzüchtung durch Analyse wichtiger Merkmalsausprägungen Dissertation Zur Erlangung des akademischen Grades doctor agriculturarum (Dr. agr.) Von Diplomagraringenieur Kalina Andreeva Halle/Saale 2005 urn:nbn:de:gbv:3-000010379 [ http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000010379] Aus dem Institut für Pflanzenzüchtung und Pflanzenschutz Direktor: Prof. Dr. habil. W.E. Weber der Landwirtschaftlichen Fakultät Dekan: Prof. Dr. habil. P. Pickel der Martin-Luther-Universität Halle-Wittenberg Erschließung genetischer Ressourcen der Wiesenrispe für die Gräserzüchtung durch Analyse wichtiger Merkmalsausprägungen Dissertation Zur Erlangung des akademischen Grades doctor agriculturarum (Dr. agr.) vorgelegt von Diplomagraringenieur geb.am 17.11.1973 Kalina Andreeva in Burgas Gutachter: Prof. Dr. habil. A. Graner Prof. Dr. habil. W.E. Weber PD Dr. habil. A. Börner Verteidigung am: 16.01.2006 Halle/Saale 2005 urn:nbn:de:gbv:3-000010379 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000010379] Inhaltverzeichnis 1 Einleitung...........................................................................................................................1 1.1 Die Wiesenrispe Poa pratensis L. als Nutzgras und genetisches Objekt............................1 -
Poa Annua L.) Herbicide Resistance and Its Control on Golf Courses Robert Cross Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations 12-2014 Ecological, Physiological, and Molecular Characterization of Annual Bluegrass (Poa annua L.) Herbicide Resistance and Its Control on Golf Courses Robert Cross Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Agriculture Commons Recommended Citation Cross, Robert, "Ecological, Physiological, and Molecular Characterization of Annual Bluegrass (Poa annua L.) Herbicide Resistance and Its Control on Golf Courses" (2014). All Dissertations. 1431. https://tigerprints.clemson.edu/all_dissertations/1431 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. ECOLOGICAL, PHYSIOLOGICAL, AND MOLECULAR CHARACTERIZATION OF ANNUAL BLUEGRASS (Poa annua L.) HERBICIDE RESISTANCE AND ITS CONTROL ON GOLF COURSES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Science by Robert Billings Cross, III December 2014 Accepted by: Dr. L. B. McCarty, Committee Chair Dr. W. C. Bridges Dr. J. S. McElroy Dr. N. Tharayil Dr. T. Whitwell ABSTRACT Annual bluegrass (Poa annua L.) is one of the most pervasive, adaptable, and variable plant species in the world and is the most problematic winter annual weed in managed turfgrass. Its prolific seedhead production regardless of mowing height, clumping growth habit, and lack of tolerance to stress reduces turfgrass aesthetic quality and playability on golf courses. Its ability to germinate almost year-round influences cultural practices and herbicide use. -
The Seed Plants, Ferns, and Fern Allies of the Austin Region
University of Texas Bulletin No. 2065: November 20, 1920 The Seed Plants, Ferns, and Fern Allies of the Austin Region By Mary Sophie Young, Ph.D. PUBLISHED BY THB UNIVERSITY OF TBXAS AUSTIN : Publications of the University of Texas Publications Committee Frederic Duncalf C. T. Gray Killis Campbell E. J. Mathews D. B. Casteel C. E. Rowe F. W. Graff A. E. Trombly The University publishes bulletins six times a month, so numbered that the first two digits of the number show the year of issue, the last two the position in the yearly series. (For example, No. 1701 is the first bulletin of the year 1917.) These comprise the official publications of the University, publications on humanistic and scientific sub- jects, bulletins prepared by the Bureau of Extension, by the Bureau of Government Research, and by the Bureau of Eco- nomic Geology and Technology, and other bulletins of gen- eral educational interest. With the exception of special num- bers, any bulletin will be sent to a citizen of Texas free on request. All communications about University publications should be addressed to University Publications, University of Texas, Austin. 12-29-20-1357-6274-lm University of Texas Bulletin No. 2065: November 20, 1920 The Seed Plants, Ferns, and Fern Allies of the Austin Region By Mary Sophie ^ oung, Ph.D. PUBLISHED BY THE UNIVERSITY SIX TIMES A MONTH, AND ENTERED AS] SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN. TEXAS. UNDBR THE ACT OF AUGUST 24, 1912 v i |1*o The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern- ment.